Use of Hyphal Image Analysis and Machine Learning to Classify **Mucoromycota Soil Fungal Isolates** Julian Liber¹, Elizabeth Gall¹, Natalie Vande Pol¹, Devin Silvia², and Gregory Bonito¹

¹Department of Plant, Soil, and Microbial Sciences; ²Department of Computational Mathematics, Science, and Engineering

Introduction

- Fungi in the group Mucoromycota are valuable
- Plant growth promotion
- Industrial production of lipids
- Study system of bacterial endosymbiosis
- Isolates obtained from culturing of soil samples
- Methods of including Fast Fourier Transform (FFT) and machine learning are useful classification tools (Mennitt, Sherrill, Fristrup, 2014; Orlov et al., 2008)

Figure 1. Phylogeny of the fungal kingdom, adapted from Choi and Kim, 2017. Mucoromycota (within Zygomycota) is a small portion of the fungal kingdom but its members are sought for their economic and scientific value.

Problem

- Identification of fungal isolates is slow, expensive
- Fungal morphological identification often relies on features absent in culture
- Hyphae have few identifiable features, but have patterns which may be classifiable

Design Goal

- Create an image classifier using a database of sequence verified images to separate Mucoromycota from other fungi
- Obtain a usefully high precision and recall
- Implement a script capable of rapid classification using only hyphae

