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PUBLIC ABSTRACT 

 

UNDERSTANDING THE ROLES OF INTERKINGDOM MICROBIAL INTERACTIONS, 

MICROBIAL TRAITS, AND HOST FACTORS IN THE ASSEMBLY OF PLANT 

MICROBIOMES 

 

By 

 

Julian Aaron Liber 

 

Multicellular life forms, from humans to plants, are not singular organisms but instead consist of 

a community of microbes on and often within a host. These microbes, such as bacteria and fungi, 

interact with the host, in mutually beneficial interactions as well as parasitic relationships. Each 

member of this community has traits, which include the types of nutrition it can consume, the 

metabolites it excretes, and how it grows in response to environmental conditions. I studied 

microbial communities of plants, which interact with the host via nutrition, signaling, disease, or 

immunity. Because an organism’s community is important in the health of the host, 

understanding what matters in the formation of the microbial community could help reduce 

disease and increase resilience for the host. First, I examine how the interactions of bacteria and 

fungi alone and in plant roots contribute to host traits, and how viral disease of the host changes 

the communities of microbes infecting roots. I present a tool developed to assign meaningful 

names to organisms detected in complex communities to understand their traits and communicate 

about the characteristics of a given community. Finally, I use this tool and report on an 

observational experiment which identifies important factors contributing to the makeup of fungal 

communities in leaves, leaf litter, and soil to forest fungal communities, and to improve methods 

for sampling these types of communities. The complex nature of microbial communities 

provides challenges for understanding how they work, but I attempt to bridge scales, from simple 

to complex, to describe how microbial communities assemble and function.



 

 

ABSTRACT 

UNDERSTANDING THE ROLES OF INTERKINGDOM MICROBIAL INTERACTIONS, 

MICROBIAL TRAITS, AND HOST FACTORS IN THE ASSEMBLY OF PLANT 

MICROBIOMES 

 

By 

 

Julian Aaron Liber 

 

The community of organisms that associate with plants are vital to both the survival of the host 

plant but also the diseases which may kill it. The processes by which this community, called the 

microbiome, assemble and function can contribute to the traits of the host, including plants that 

humans rely on for food, resources, and ecosystems services. This thesis focuses on 

understanding the assembly of microbiomes at the scale of microbe-microbe interactions and 

traits of individual microbes, as well as how characters of the host may change this process. I 

first address this by examining the in vitro and in planta interactions within small synthetic 

communities of root-inhabiting bacteria and fungi and with the plant host and viral disease of the 

host. While intermicrobial interactions in vitro were not predictive of in planta interactions, 

adding host disease or additional organisms to the system altered the assembly process. I then 

show the development and applications of the CONSTAX2 classifier, a taxonomic assignment 

tool for metabarcoding studies, which offers improved accuracy and ease of use for conducting 

metabarcoding studies exploring the diversity and structure of microbial communities. Last, I 

present a study testing which factors affected the composition of forest fungal communities to 

understand the ecology of litter-inhabiting fungi and improve methodologies for sampling leaf-

associated fungal communities. The factors affecting the assembly of plant microbiomes are 

complex and varied but connecting individual interactions to community composition and 

ultimately function may improve our abilities to predict and manage microbiome processes.
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INTRODUCTION 

 What makes a plant a plant? While some plants can survive alone, without a community, 

most require an assemblage of diverse microbes and other organisms to exists in the 

environments that they inhabit (Vandenkoornhuyse et al., 2015). Members of this community 

interact with the host plant – in mutualistic and parasitic ecologies (Martin et al., 2017; Brader et 

al., 2017), but also interact with the other microbes (Regalado et al., 2020) and components of 

the community (Bray and Wickings, 2019). As we seek to understand the assembly, diversity, 

and function of plant microbiomes, we can take a reductionistic approach – microbial traits, 

pairwise interactions, culturable representatives – or an ecosystem approach – whole community 

inoculation, manipulating large taxonomic groupings, and/or culture-independent analyses. Each 

of these methodologies has benefits and drawbacks. Reductionistic approaches fail to capture 

emergent behavior of large communities, or the diversity of traits and combinations of traits 

which each organism may possess but are generally more tractable and can establish ecological 

rules for how microbes interact with their host. The ecosystem approach can struggle to apply 

predicable rules to complex systems with poorly understood components yet offers 

demonstrations of methodologies in realistic settings and observes organisms how they typically 

exist. In this thesis I work to study both sides of microbial ecology: connecting the interactions 

of a small number of components (Chapter 1) to occurrence patterns in real communities 

(Chapter 3), whereby taxonomic assignment (Chapter 2) can provide the insights of individual 

traits at community scales. As plant microbiome science develops, studies will have to bridge 

scales to be generalizable, make specific and falsifiable predictions, and translate fundamental 

principles to useful applications. 
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Research Goals 

Interactions of plant host, virus, fungi, and bacteria 

In Chapter 1, I set out to understand the mechanism of how endophytic bacteria and fungi 

colonize plant roots, and how interactions between these microbes and the plant host influence 

and are influenced by the infection process. I later included a plant pathogenic virus in the 

bacteria, fungi, and plant interaction system which allowed for investigating the potential of 

endophytes in biocontrol of viral disease and for observing how changes in the host’s physiology 

(nutrition and immunity statuses) reflected on its microbiome. I approached these experiments 

with the following hypotheses: 1) pairwise in vitro interactions of microbes would predict their 

interactions in plant roots, 2) microbial inoculants would have impacts on plant traits, 3) co-

inoculation of bacteria and fungi would alter their abundance compared to single inoculation via 

facilitation or competition, and 4) viral disease would alter plant traits and the abundances of root 

endophytes.  

The CONSTAX2 classifier 

Chapter 2 focuses on the development and validation of the CONSTAX2 classifier, a 

bioinformatics tool designed to assist in assigning accurate and meaningful taxonomic labels to 

DNA sequences obtained from metabarcoding studies. These types of studies sequence a 

community of organism by amplifying a single genetic marker, often part of the rDNA operon, 

and seek to understand the processes and factors which contribute to the structure and function of 

microbial communities. The classification of operational taxonomic units (OTUs), a stand-in for 

species in the context of metabarcoding surveys, facilitates the assignment of functional 

attributes, such as trophic guild in fungi (Nguyen et al., 2016). We can understand a taxon name 

and relate it to known characters about that group from the literature. While it is no substitute for 



3 

 

functional analysis with metatranscriptomics or other meta-omics approaches (Santoferrara et al., 

2020; Elferink et al., 2020), taxonomic assignment offers ways to communicate about and 

understand more deeply community analysis than simply patterns in the occurrence of OTUs. 

 While several tools already exist to perform taxonomic assignment in metabarcoding 

studies, CONSTAX2 was designed with the following goals: 1) provide a simple to install, well 

documented, and easy to customize tool with non-legacy software dependencies, 2) improve 

accuracy to be equal to or better than existing tools, 3) allow for use with any desired group of 

organisms, and 4) maintain useable time and memory requirements. CONSTAX2 was applied to 

describe the communities of fungi associated with maple and hickory leaf, litter, and soil 

communities in Chapter 3. 

Leaf litter communities 

 Chapter 3 developed as an education project to learn the tools and approaches for using 

metabarcoding in community ecology. Our original plan in the project was to trace the 

associations of fungal communities on (epiphytes) and in (endophytes) leaves, fallen leaf litter, 

and soil in a temperate forest to assess the sources of litter fungal communities. Litter 

decomposition is an important process for nutrient cycling (Parton et al., 2007) , and the 

assembly of this community is likely important to its function. However, due to the single 

timepoint sampling and lack of functional characterization of community members, we refocused 

on examining the factors contributing to the structure of these communities. The samples were 

derived from two tree host species, from five sites within a forest plot, and from the four 

substrates or compartments: epiphytes, endophytes, litter, and soil. Additionally, we tested two 

swab types for epiphyte community sampling to improve the cost effectiveness of sampling. Our 

hypotheses for this experiment were: 1) the factors of host species, site, and substrate contribute 
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to the structure of fungal communities, 2) epiphyte and endophyte communities would be more 

similar to litter communities than soil, and 3) swab types would have differential performance. 

Our efforts to characterize these fungal communities adds to our understanding of the 

distribution and traits of the organisms detected, suggests mechanisms of dispersal across 

substrates, and provides evidence for the effectiveness of sampling methodologies. 
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CHAPTER 1: FOUR-WAY INTERACTIONS OF HOST, VIRUS, FUNGI, AND BACTERIA 

IN THE PLANT MICROBIOME 

Abstract 

Complex, multi-domain communities exist in, on, and around plants. We aimed to 

understand how intermicrobial and host-microbe interactions lead to the assembly of a plant 

microbiome to better create beneficial communities capable of maintaining health under biotic 

and abiotic stresses. Bacteria and fungi are common plant endophytes, organisms which grow 

within plant tissues without causing notable disease. We examined how bacterial and fungal 

root-inhabiting endophytes interacted in vitro and in planta in the annual grass Brachypodium 

distachyon. We further tested the effects of barley yellow dwarf virus (BYDV), a plant-

pathogenic virus, on plant traits and endophyte communities when co-inoculated with the 

bacterium Enterobacter ludwigii and the fungus Fusarium falciforme. Antagonistic volatile 

interactions were observed between E. ludwigii and F. oxysporum, and E. ludwigii had a negative 

effect on shoot biomass without any effect or interaction with fungal co-inoculants. The addition 

of fungi to plants pre-inoculated with E. ludwigii reduced abundance of the bacteria in roots, as 

did the infection of the plants with BYDV. Endophyte and virus inoculations both had effects on 

plant traits but were not interacting. Fungal tissue abundance in roots was unaffected by BYDV 

infection. Intermicrobial interactions and host disease were observed to alter the assembly of 

plant microbiomes, which suggests potential for design of microbial inoculants based on 

characterization of intermicrobial interactions and managing viral disease by reducing impacts 

on microbiome functions. 
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Introduction 

Plants do not grow as an isolated entity. Rather, they exist in a community composed of 

microbes – viruses (Koskella and Taylor, 2015), bacteria (Ulbrich et al., 2021), archaea (Moissl-

Eichinger et al., 2018), fungi (Materatski et al., 2019), oomycetes (Maciá-Vicente et al., 2020), 

protists (Sapp et al., 2018) – and larger organisms, such as invertebrate animals (Bray and 

Wickings, 2019) and other plants (Kong et al., 2021). Each organism in this community can 

occupy one or more distinct or overlapping niches: saprotrophs (Kuo et al., 2014), biotrophs 

(Tisserant et al., 2013), parasites and hyperparasites (Vandermeer et al., 2009; Jeffries, 1995), 

pathogens (Grünwald et al., 2016), autotrophs (Priya et al., 2015), mycorrhizae (Cope et al., 

2019), and nitrogen fixers (diCenzo et al., 2020). In each of these roles the organisms can affect 

both one another and the plant host. Some produce or consume plant hormones (Nassar et al., 

2005; Gravel et al., 2007; Waqas et al., 2012; Saikia et al., 2018) or provide critical nutrients 

such as phosphorus (Thingstrup et al., 2000) or nitrogen (Ryu et al., 2020). Plants often have 

closely associated microbes on the surface of root and shoot tissue (rhizoplane and phylloplane 

epiphytes) and within these same tissues (root or shoot endophytes; Gopal and Gupta, 2016). The 

composition of these communities have previously been associated with plant health, especially 

with suppressing disease (Carrión et al., 2019), tolerating stresses (Vujanovic et al., 2019), or 

even resistance to herbivory. 

Plant pathogenic viruses may be the simplest component of the plant microbiome in 

terms of size alone. Yet, plant pathogenic viruses, especially those of crops, cause serious threats 

to global food security (Jones and Naidu, 2019). In cereal crops including barley, wheat, and oats 

(Miller et al., 2002), barley yellow dwarf virus (BYDV) can reduce yields by 0.34-0.55% for 

each percent increase in virus infection, which was determined as 24.4% ± 2.5% infected and 
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47.8 ± 2.5% in the naturally infected plots assessed by Perry et al. (2000) in Illinois and Indiana 

in 1997. This ssRNA(+) virus is transmitted by aphids, which feed from the phloem where the 

virus replicates (Choudhury et al., 2017; Miller et al., 2002). In turn, the virus results in stunted 

growth of the host due to compromised vascular transport (Liu and Buchenauer, 2005), 

associated with symptoms such as reduced root length, seed mass, seed yield, tiller number, tiller 

height, and shoot mass (Riedell et al., 2003). This pathogen is typically treated by suppressing 

aphid populations with insecticides (McKirdy et al., 2002). This viral pathogen is a useful 

system for exploring plant-pathogen-microbiome interactions because it can be transferred to 

new plants in a controlled manner by transfer of aphids from an infected host to a non-infected 

host, is a consequential disease, and is likely altering both immune and nutrient status of the host 

in ways that may affect the microbial community. 

Bacteria and fungi, as abundant members of rhizosphere and endosphere communities, 

are commonly interacting through a variety of mechanisms (Deveau et al., 2018). Space and 

nutrients are limited in soil and root tissues, which suggests that resource competition may 

dictate the assembly and dynamics of these communities (Bulgarelli et al., 2013). While fungi 

and bacteria can exclude one another from root colonization (Mousa et al., 2016), fungi and 

bacteria may alternatively show mutual benefit in motility and nutrient acquisition (Zhang et al., 

2016; Jiang et al., 2021). Furthermore, the host plant has multiple types of responses to 

microbes, which may trigger immune responses that alter the community (Teixeira et al., 2019). 

Host plants defective in pattern-triggered immunity can assemble unhealthy communities of 

microbes, termed dysbiosis (Chen et al., 2020). Community assembly theory suggests that a 

series of “filters” may dictate the organisms present in the community, whereby organismal traits 

are critical to survive selection by environmental conditions, including biotic and abiotic factors 
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(Keddy, 1992). The composition of the communities in and around the roots of a plant could be 

determined by interspecific interactions with other organisms present, host factors, or abiotic 

factors (nutrients, soil type, climate). 

Biocontrol of crop diseases has been considered as a management approach to improve 

sustainability, avoid agrochemical applications, and overcome disease pressure for many years 

(New and Kerr, 1972; Lewis and Papavizas, 1991; Stenberg et al., 2015; Ellis, 2017; Syed Ab 

Rahman et al., 2018; De Silva et al., 2019). This approach employs a beneficial inoculant, often 

a bacterium or fungus, to reduce disease effects on the crop (Syed Ab Rahman et al., 2018). The 

biocontrol agents are often single, specialized strains with known capabilities (New and Kerr, 

1972; Howell et al., 1993; Kamensky et al., 2003), but more recently communities of microbes 

have been developed for improved effectiveness (Gross et al., 2018; De Vrieze et al., 2018; Niu 

et al., 2020). As with more general interactions of microbes, biocontrol of diseases can be 

facilitated by the actions of special metabolites (Christiansen et al., 2020) or enzymes (Kappel et 

al., 2020; Sorokan et al., 2020) exported by the biocontrol agent, resource competition (Wei et 

al., 2017), or mediated through host immunity (Van Wees et al., 1997; de Lamo et al., 2018). 

The host plant Brachypodium distachyon (L.) P.Beauv., hereafter “Brachypodium” or B. 

distachyon, is a C3 annual grass, and an established model organism for cereals, including wheat 

and barley (Draper et al., 2001). B. distachyon has a small diploid genome, small footprint, fast 

life cycle, extensive experimental resources, associates with bacterial and fungal endophytes 

(Gagné-Bourque et al., 2015; Penner and Sapir, 2021), and is susceptible to BYDV (Tao et al., 

2016) making it an appropriate system for studying the interactions of microbial symbionts and 

viral disease. Furthermore, it has previous been characterized as a non-host model for 
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switchgrass (Panicum virgatum; Gill et al., 2015), from which a large collection of fungal 

isolates had been cultured by our research group. 

As interest is growing in using microbial inoculations to improve the sustainability and 

productivity of agriculture, practitioners face a challenge in understanding the context and 

conditions that effect the efficacy of these approaches. Moreover, microbial inoculations may 

have additional, unexplored benefits for treating or preventing crop diseases. We aim to describe 

how interactions between microbes, the host, and viral disease result in alteration to the 

microbial community and impacts on the host plant. Because microbes often compete for space 

or nutrients from the host, and viral disease alters the supply of these resources, we expected that 

inoculating additional microbes on the plant will change the abundances of present members, and 

that viral disease will alter the host’s microbial community. Characterizing the effects of these 

complex, multi-member interactions may help improve the predictability and application of 

agricultural microbial inoculants. 

Methods 

Isolation of endophytic bacteria and fungi 

Switchgrass roots obtained from a fertilized Great Lakes Bioenergy Research Center plot 

at the Kellogg Biological Station were washed until no visible soil was present, then sterilized in 

ethanol and bleach according to Bashan et al. (1993). Roots were finely chopped with sterilized 

scissors, then shaken at 30°C for 48 hr in 0.85% sterile NaCl solution. After incubation, the 

solution was serially diluted in three series, down to 10-4, and spread (100 μL) or streaked on 

King’s B agar (Bashan et al., 1993) and incubated at 30°C overnight. After colonies were visible, 

morphotypes were restreaked on new plates and roughly identified with 16S PCR and Sanger 

sequencing using 27F and 1492R primers. Isolate FCP2-01 was later genotyped using HSP60 
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primers and identified as Enterobacter ludwigii (Hoffmann et al., 2005) with BLASTn against 

the NCBI Nucleotide Database (HSP60 sequence: MW988544). Fungal isolates were obtained 

from surface sterilized roots by Morgane Chretien, and later identified with sequencing of the 

ITS1 locus and identification with BLASTn (Table 1.1). MC67 was later identified with RPB2 

(MW988545, MW988546) and EF1α (MW988543) locus sequencing with primers 5F2/11aR 

(O’Donnell et al., 2007) and EF1/EF2 (O’Donnell et al., 1998), respectively.  

Strain Name Species In vitro In planta ITS Accession 

MC20 Rhizopus oryzae X X MW980743 

MC50 Alternaria sp. X  MW980744 

MC54 Mucor circinelloides X X MW981501 

MC64 Talaromyces sp. X  MW980745 

MC67 Fusarium falciforme X X MW974615 

MC68 Fusarium oxysporum X   

Table 1.1 Fungal endophyte strains used in interaction experiments. 

Strains were identified with sequencing of the ITS1 and/or additional loci. Each “X” denotes that 

a given strain was used for in vitro or in planta experiments. 

Transformation of bacterial endophyte with GFP 

A transformation protocol was developed for FCP2-01 due to its growth characteristics 

and susceptibility to chloramphenicol and streptomycin selection. The plasmid BBa_K608011 

which constitutively expressed GFP was used to quickly determine transformants, and later to 

visualize bacteria on and within roots. FCP2-01 was grown in 50 mL of lysogeny broth (LB) 

overnight (15-24 hr) at 225 rpm at 30 °C, then transferred to a 50 mL conical tube and 

centrifuged at 4000 x g for 10 min. The supernatant was poured off and replaced with 25 mL 

sterile 18 MΩ∙cm water. The cells were resuspended, and washed centrifuge again with the same 

conditions. Cells were resuspended in 25 mL of 10% glycerol in water. This suspension was 

frozen at -80°C until used, whereupon cells were thawed on ice prior to the addition of plasmid 

https://www.ncbi.nlm.nih.gov/nuccore/MW988544
https://www.ncbi.nlm.nih.gov/nuccore/MW988545
https://www.ncbi.nlm.nih.gov/nuccore/MW988546
https://www.ncbi.nlm.nih.gov/nuccore/MW988543
https://www.ncbi.nlm.nih.gov/nuccore/MW980743
https://www.ncbi.nlm.nih.gov/nuccore/MW980744
https://www.ncbi.nlm.nih.gov/nuccore/MW981501
https://www.ncbi.nlm.nih.gov/nuccore/MW980745
https://www.ncbi.nlm.nih.gov/nuccore/MW974615
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DNA. Cells were transformed by adding 100 μL of suspension and 100 ng plasmid into an ice-

chilled 1 mm electroporation cuvette, which was then used to electroporate cells at 1.8 kV. 1 mL 

of warmed (37°C) SOC was then added to the cuvette, and then as much cell suspension as 

possible was pipetted out of the cuvette and into a 1.5 mL microcentrifuge tube and shaken at 

30°C at 175 rpm for 1 hour. 100 μL of cell suspension was spread plated on LB agar 

supplemented with 30 μg∙mL-1 chloramphenicol, then plates were sealed with parafilm and 

incubated at 30°C until colonies were visible, about 24-48 hr. 

Volatile interactions of bacterial and fungal endophytes 

Prior to plant inoculation, fungal partners of the bacteria were evaluated in vitro. Volatile 

interactions were evaluated on 4-way divided 100 mm plates, with fungal and bacteria colonies 

inoculated on MEA and LB agar, respectively, but sharing headspace. 10 μL of E. ludwigii 

FCP2-01, grown 24 hr at 30°C were placed in opposite quadrants. Fungal plugs were place in 

adjacent quadrants.  Fungal growth was measured using by averaging three radii, and time of 

measurement was dependent on growth rate. Comparisons were made to plates with fungi but 

absent bacterial inoculation. 

Growth of bacteria, fungi, and Brachypodium in axenic plate cultures 

Brachypodium distachyon Bd21-3 (genotyped at gene Bradi1g34430) seeds were 

sterilized prior to plate growth experiments by shaking seeds in a solution of 0.6% NaOCl and 

0.1% Tween 20 for 7 minutes, followed by 5 washes in sterile water. Seeds were kept in a foil-

covered 15 mL conical tube at 4°C for 72 hr. Enterobacter ludwigii FCP2-01[BBa_K608011] 

was grown in 16 mm x 100 mm culture tubes at 30°C for about 18 hr, reaching OD600 (1/10) of 

~0.4. Seeds were transferred to separate 15 mL conical tubes with 6 mL of LB or bacterial 

culture, then placed on a 2D rocker at 4°C for 15 min. Seeds were then placed onto LS/2 plates 

https://phytozome.jgi.doe.gov/pz/portal.html#!gene?search=1&crown=1&detail=1&method=0&searchText=transcriptid:32800524
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(Linsmaier and Skoog, 1965) without sucrose, covered in aluminum foil, and placed in a growth 

chamber set at 23°C, 16 hr/8 hr day/night cycle, covered in foil for the first 24 hr to facilitate 

germination. Root hair zone images were acquired at 7 days with a Leica S9D stereo microscope 

(Leica Microsystems, Bannockburn, IL, USA), then the root hair zone was measured with 

ImageJ (Schneider et al., 2012) by an evaluator who was unaware the applied treatments. After 8 

days in the growth chamber, 1 cm square blocks of fungi-colonized malt extract agar (10 g∙L-1 

malt extract, 1 g∙L-1 yeast extract, and 10 g∙L-1 Bacto agar) were placed onto each plant plate. 

Plants were harvested after 10 days. 

Quantification of endophyte infection of roots 

Root tissue was collected from plates using sterilized forceps, then placed into a 50 mL 

conical tube to which 10% bleach (0.6% NaOCl) and 0.1% Tween 20 was added, then shaken for 

30 s followed by 1 rinse with sterile 18 MΩ∙cm water. Shoots and roots were split by cutting at 

the green to brown transition with a scalpel and the seed coat was removed. Roots were then 

placed into pre-massed 2 mL round bottom tubes, and frozen at -80°C. Frozen root samples were 

then lyophilized for about 2 days until fully dry. Shoot tissue was also harvested, placing into 

pre-massed 2 mL tubes and lyophilizing, but without rinsing. Root and shoot biomass were 

determined after drying. Two sterilized 5/32” steel beads were added to each root tissue tube, 

and roots were pulverized at 30 Hz for 1 min in a TissueLyzer II (Qiagen, Carlsbad, CA, USA). 

Pulverized root tissue was extracted with the Mag-Bind® Plant DNA Kit (Omega Bio-tek, 

Norcross, GA, USA).  

Quantitative PCR was performed with these DNA extracts as template. The primers 

Bd_UBC18_F1 (5’-CTAGTTCCACCTTGCATCTCTAC-3’), Bd_UBC18_R1 (5’-

TCAGTTGCTCTGGCTTCTAAC-3’), EntLud_rodA_F2 (5’-
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GGTATGGTGAGTGGTATTCTGC- 3’), and EntLud_rodA_R2 (5’-

TCGACATCACGATACCAAACC- 3’) were designed with IDT PrimerQuest to target single-

copy genes for B. distachyon (BdiBd21-3.4G0006300.1) and E. ludwigii (ECWSU1_RS05980), 

respectively. qPCRs were 15 μL per reaction, with 7.5 μL Power SYBR® Green Master Mix 

(ThermoFisher Scientific, USA) or Luna® Universal qPCR Master Mix (New England Biolabs, 

Ipswich, MA, USA), 0.25 μL of each 10 μM primer, 5.5 μL nuclease-free water, and 1.5 μL 

template. Reactions were performed on an Eppendorf MasterCycler® RealPlex 2 (Eppendorf, 

Hauppauge, NY, USA), consisting of 10 min at 95°C, then 40 cycles of 95°C for 15 s and 60°C 

for 1 min, with a fluorescence read during anneal/elongation for Power SYBR® Green Master 

Mix, or with a modified 2 min initial denaturation and 30 s elongation for Luna® Universal 

qPCR Master Mix. A melting curve of 95°C for 15 s, 60°C for 15 s, then up to 95°C over 20 min 

with fluorescence reading was performed to assess amplification specificity. Ct values derived 

from the automated threshold were then used to calculate relative bacterial cells per plant cell 

with the Pfaffl method (2001), accounting for experimentally determined primer efficiency. 

Infection of Brachypodium with endophytes and BYDV-PAV-MI 

Following axenic plate experiments, we incorporated the plant virus BYDV-PAV 

(Luteovirus) strain “MI” to examine the how a plant pathogen interacts with inoculated 

endophytes. Potting mix weas prepared by wetting Arabidopsis mix from the Michigan State 

University Plant Research Laboratory Growth Chamber Facility until wet but not dripping, and 

autoclaving twice for 45 minutes at pressure, separated by 24 hr. The mix was rinsed with sterile 

distilled water after the second autoclave run and packed into pots. Seeds were sterilized as 

before, then stored at 4°C for 15 days before planting in soil. Plants were watered every third day 

with distilled water from the bottom. Plants were grown in an indoor temperature-controlled 
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room at 26°C with 16 hr/8hr light/dark cycle under fluorescent lights at ~136 μmol∙m-2∙s-1 PAR 

at soil level. 

Infection with BYDV-PAV-MI was performed 14 days after plating. Aphids () were 

transferred from infected oat shoot tissue by cutting a piece of oat leaf or stem with ~5 aphids 

and moving it into the pot with the Brachypodium and covering with a cage consisting of a clear 

tube capped by fine mesh to prevent escape. Negative control plants were mock infected with 

aphids feeding from non-infected oat plants. After 2 days, the plants were drenched in Astro®, a 

permethrin-based insecticide, to kill any aphids on the plant. 

Fusarium falciforme MC67 was grown for 28 days at room temperature under a 50 

μmol∙m-2∙s-1 PAR 12hr/12hr light/dark cycle on PDA/2 +YE (12 g∙L-1 potato dextrose broth, 1 

g∙L-1 yeast extract, 10 g∙L-1 Bacto agar). These plates were sliced with a scalpel and placed into a 

50 mL conical tube with sterile water and glass beads, then vortexed and filtered through 

Miracloth fabric (MilliporeSigma, Burlington, MA, USA) to obtain spores. Spore concentration 

was determined with a counting camber, then diluted with water to final inoculum concentration. 

E. ludwigii FCP2-01[BBa_K608011] was grown at 30°C for 22 hr in a 250 mL baffled flask 

containing 50 mL LB, shaking at 200 rpm. This obtained an OD600 of 7.24. The cells were 

centrifuged at 4000 x g for 10 min at room temperature, then diluted with water using CFU 

estimates from a standard curve of dilutions. The combined fungal/bacterial inoculum contained 

~3∙108 bacteria cells and 103 conidial spores per mL. Plants were inoculated with either 1 mL of 

the combined fungal/bacterial inoculum or an equal amount of sterile water at 20 days post 

planting. 
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Assessment of plant traits and endophyte infection 

Plants were harvested 41 days after seeds were plated. Leaf area was determined for all 

above-ground parts of the plant by scanning with a LI-COR LI-3100 Area Meter (LI-COR 

Biosciences, Lincoln, NE, USA). Plant height was measured from the potting mix surface to the 

tallest spike. Number of tillers were recorded at the number of distinct, flower-bearing stems 

with leaves present. Depth to potting mix was recorded as a covariate. Shoot tissue was placed in 

Whirl-Pak bags (Whirl-Pak, Madison, WI, USA), which were pierced and lyophilized. Roots 

were removed from potting mix with forceps and water, sterilized with bleach and Tween 20 as 

before, then placed into pre-massed 2 mL microcentrifuge tubes with two 5/32” steel beads and 

lyophilized. Dried shoots and roots were massed, then roots were pulverized and DNA was 

extracted as before. DNA was diluted to 20x and 50x with nuclease-free water, then used as 

qPCR template with Power SYBR® Green Master Mix reaction mix and condition from before, 

and the BD_UBC18, EntLud_rodA, and a primer set for the fungal inoculum, FusSol_EF1a_F2 

(5’-AGCGTGAGCGTGGTATC-3’) and FusSol_EF1a_R2 (5’-ACATACCAATGACGGTGAC-

3’), targeting a conserved region of the EF1α locus of strain MC67 in the Fusarium solani 

species complex, which was later identified as F. falciforme. For the E. ludwigii and F. 

falciforme primer sets, the Ct value was compared to the Ct value for the B. distachyon primer set 

at equal dilution, to account for effects of PCR inhibitors. Ct values were taken as the mean of at 

least two technical replicates. If the two replicates had a standard deviation greater than 1, 

another replicate was performed and the mean Ct values was calculated from the closest two 

replicates. Relative inoculum cells per plant cells were determined with 2ΔCt. Endophyte 

abundance distributions determined by qPCR were highly non-normal and were therefore 

analyzed with non-parametric tests. 
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Plant trait effects were modeled with a linear model (“lm” function in base R; R Core 

Team, 2019) using endophyte and virus inoculation and their interaction as random effects and 

soil depth as a covariate. Each trait value was transformed if needed to approximate a normal 

distribution. Estimated marginal means and pairwise differences were calculated with emmeans 

1.3.5 (Lenth, 2020) and multcomp 1.4-13 (Hothorn et al., 2008). Analysis in R and plot creation 

were performed with tidyverse 1.3.0 (Wickham, Averick, et al., 2019), including tibble 3.0.5 

(Müller and Wickham, 2019), tidyr 1.1.2 (Wickham and Henry, 2020), dplyr 1.0.3 (Wickham, 

François, et al., 2019), ggplot2 3.2.1 (Wickham, 2016), patchwork 1.0.0 (Pedersen, 2019), maditr 

0.7.4 (Demin, 2020), ggfortify 0.4.11 (Horikoshi and Tang, 2018; Tang et al., 2016), and ggpubr 

0.2.3 (Kassambara, 2019).  

Microscopy to evaluate endophyte presence in roots 

Plant roots were derived from seedlings grown identically to those used for biomass and 

qPCR experiments, with the exception of only planting 3 seedlings per plate and light present for 

24 hr per day. The roots were harvested for confocal microscopy by breaking up the agar 

medium and removal of roots, then placement into 2 mL microcentrifuge tubes. 500 μL HPSS 

(pH 9.1) was added to each tube, in addition to 100 μL of 1 mg∙mL-1 Calcofluor white M2R 

(360/430 nm, λex/λem) and 20 μL of 100 μg∙mL-1 Wheat Germ Agluttinin - 640R (642/662 nm, 

Biotium, Fremont, CA, USA). The samples were then vacuum infiltrated 3 times and viewed 

using an Olympus Fluoview FV10i Confocal Laser Scanning Microscope (referred to as CLSM, 

Olympus Life Science Solutions, Waltham, MA, USA). Bacterial cells were visualized using 

GFP fluorescence (488/507 nm). 
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Results 

In-vitro bacterial-fungal interactions 

In-vitro volatile interactions were observed pairwise between MC68 (Fusarium 

oxysporum) with bacteria present, showing decreased growth (FDR = 0.0080). All other pairwise 

comparisons were not significant (FDR > 0.05; Figure 1.1).  

 

Figure 1.1 Volatile interactions of bacteria on fungal colony radii. 

Radii of fungal endophyte colonies exposed to volatile-containing headspace of the bacterium E. 

ludwigii FCP2-01 (blue, “B+”) and without bacterial volatiles (orange, “B-“). Pairwise 

comparisons are Tukey’s post-hoc test, double asterisks indicate significance at FDR < 0.01. 

Plant biomass and root morphology 

A significant negative effect of bacteria inoculation was observed on dry shoot biomass 

(F = 5.075, p = 0.028), but not on root biomass (F = 2.375, p = 0.13; Figure 1.2). Additionally, 
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the effects of fungus overall or of fungus-bacteria interaction were not observed as significant for 

either shoots or roots (p > 0.05). Post-hoc tests did not show any significant pairwise 

comparisons for root or shoot biomass (FDR > 0.05). Measurements of the root hair zone 

diameters of 6-day-old Brachypodium seedlings showed inoculated seedlings having 

significantly larger root hair zones (t = 7.1972, p = 7.88∙10-9, Figure 1.3). 

 

Figure 1.2 Dry root and shoot biomass of Brachypodium seedlings. 

Mean values are shown with larger solid circles, with ±1 standard error displayed as vertical bars 

above and below the mean. Individual values are shown as smaller semi-transparent circles. 

Bacteria absent (“B-“) and bacteria present (“B+”) treatments are shown with orange and blue 

colors, respectively, and each fungal co-inoculant or negative control (“F-“) are shown along the 

x-axis. Different letters indicate significant differences at FDR < 0.05 (Tukey’s post-hoc test). A 

significant negative effective was observed for the bacterial inoculant on shoot biomass (F = 

5.075, p = 0.0282) but not for root biomass (v).  
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Figure 1.3 Root hair zone diameter in response to bacterial inoculation. 

Mean values are shown with larger solid circles, with ±1 standard error displayed as vertical bars 

above and below the mean. Seeds which received a bacterial seed coating (“B+”) demonstrated 

significantly longer root hairs than without bacteria (“B-”; p = 7.88∙10-9). 

Bacterial infection 

Quantification of bacterial infection of the roots showed a significant effect fungal 

inoculant (ANOVA, F = 8.977, p = 0.0003), with the control condition exhibiting the highest 

infection (Figure 1.4). The control was significantly different from all three fungal-inoculated 
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conditions, but these did not vary between each other (Tukey’s post-hoc test, FDR < 0.05).

 

Figure 1.4 qPCR quantification of E. ludwigii FCP2-01 bacterial infection of plant roots by 

fungal co-inoculant. 

Fungal co-inoculants are shown along the x-axis, with “F-” representing no fungal inoculant. 

Mean values are shown with larger solid circles, with ±1 standard error displayed as vertical bars 

above and below the mean, with individual values as semi-transparent smaller circles. Different 

letters indicate significant differences between fungal inoculant conditions (Tukey’s post-hoc 

test, FDR < 0.05). Relative number of bacterial cells per plant cell, determined by qPCR copy-

number ratio, was significantly associated with fungal co-inoculant (F = 8.977, p = 0.0003).  

CLSM of Bacterial, Fungal, and Plant Interactions 

Bacterial cells of FCP2-01 and fungal hyphae of R. oryzae MC20 were visualized inside 

roots of Brachypodium seedlings. Image planes of the inside of roots show both hyphae and 

bacteria cells within the apoplast of the plant roots (Figure 1.5). There are some locations were 

both microbes are present (red arrow), however these areas may be on the surface and therefore 
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less exclusive. At higher magnification (Figure 1.6), bacterial cells are located on the surface of 

the root, but not primarily on the hyphae. 

 

Figure 1.5 R. oryzae MC20 hyphae and E. ludwigii FCP2-01 in Brachypodium roots. 

A) Cellulose and chitin stained with Calcofluor White M2R for staining of plant and fungal 

tissue, B) GFP signal from E. ludwigii FCP2-01[BBa_K608011], C) fungal tissue stained with 

WGA, and D) merged image. Scale bars represent 20 μm. Bacterial cells and fungal hyphae do 

not appear to co-localize, but instead exclude each other from root apoplast spaces, except for the 

site indicated by the red arrow appeared to be on the root surface. 

A B 

C D 
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Figure 1.6 R. oryzae MC20 and E. ludwigii FCP2-01 on surface of Brachypodium root. 

Cells of FCP2-01 appear to occupy spaces independent of the hyphae (red arrows) and are not in 

high abundance on the surface of the hyphae. 

Effect of viral infection on plant traits and endophyte communities 

 Several plant traits were assessed for four conditions: negative control (no inoculum), 

endophyte only (E. ludwigii FCP2-01 and F. falciforme MC67), virus only, and endophyte and 

virus. While number of tillers was recorded for each plant, this was not included in the analysis 
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because only 2 plants had more than a single tiller. For each trait, either endophyte inoculation 

(“Endophyte” – leaf area, area to height ratio) or virus infection (“Virus” – height, dry root mass, 

dry shoot mass, root to shoot ratio) had significant effects (p < 0.05; Table 1.2). However, the 

interaction of endophyte inoculation and virus infection (“Endophyte:Virus”) was not significant 

for any plant trait, nor was the soil depth covariate. Pairwise differences were observed between 

treatments for each of the phenotypes assessed (Figure 1.7). Plants inoculated with endophytes 

had significantly smaller leaf area and area to height ratio, while virus infected plants had 

decreased height, dry shoot mass, dry root mass, and root to shoot ratio. Additionally, ordination 

by the four primary traits (height, leaf area, dry root mass, and dry shoot mass) showed 

separation by treatment (Figure 1.8). 

  



24 

 

  Df Sum Sq Mean Sq F value Pr(>F) 

Leaf area 

Endophyte 1 1.1401 1.1401 12.4275 0.0012 

Virus 1 0.3662 0.3662 3.9919 0.0535 

Soil depth 1 0.1253 0.1253 1.3663 0.2503 

Endophyte:Virus 1 0.0966 0.0966 1.0524 0.3120 

Residuals 35 3.2110 0.0917     

Height 

Endophyte 1 0.8702 0.8702 0.0653 0.7999 

Virus 1 181.9023 181.9023 13.6389 0.0008 

Soil depth 1 0.6875 0.6875 0.0515 0.8217 

Endophyte:Virus 1 9.0995 9.0995 0.6823 0.4144 

Residuals 35 466.7942 13.3370   

Dry root mass 

Endophyte 1 0.0020 0.0020 1.7858 0.1901 

Virus 1 0.0282 0.0282 25.1191 1.55E-05 

Soil depth 1 0.0002 0.0002 0.1974 0.6596 

Endophyte:Virus 1 0.0020 0.0020 1.7609 0.1931 

Residuals 35 0.0392 0.0011     

Dry shoot mass 

Endophyte 1 0.0212 0.0212 0.3420 0.5624 

Virus 1 0.8432 0.8432 13.5775 0.0008 

Soil depth 1 0.1368 0.1368 2.2027 0.1467 

Endophyte:Virus 1 0.0431 0.0431 0.6938 0.4105 

Residuals 35 2.1735 0.0621   

Root:shoot ratio 

Endophyte 1 0.0157 0.0157 1.1619 0.2884 

Virus 1 0.2462 0.2462 18.2040 0.0001 

Soil depth 1 0.0025 0.0025 0.1852 0.6696 

Endophyte:Virus 1 0.0107 0.0107 0.7883 0.3807 

Residuals 35 0.4734 0.0135     

Area:height 

ratio 

Endophyte 1 1.4630 1.4630 10.8411 0.0023 

Virus 1 0.1322 0.1322 0.9797 0.3291 

Soil depth 1 0.2140 0.2140 1.5855 0.2163 

Endophyte:Virus 1 0.1061 0.1061 0.7861 0.3813 

Residuals 35 4.7231 0.1349   

Table 1.2 ANOVA tables of the observed effects of endophyte and virus inoculants and the 

soil depth covariate on plant traits. 

Endophyte inoculation consisted of a combined suspension of E. ludwigii FCP2-01 cells and F. 

falciforme MC67 conidia. Barley yellow dwarf virus strain PAV-MI was used as the viral 

inoculant and vectored into plants via Rhopalosiphum padi feeding. 
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Figure 1.7 Trait values of Brachypodium in response to inoculation with endophytes and/or 

virus. 

Observed trait values are on the y-axis, with BYDV-PAV-MI (“Virus”) infection treatment on 

the x-axis (infected “+” and uninfected “-“) and color representing E. ludwigii FCP2-01 and F. 

falciforme MC67 treatment (“Endophyte”) as inoculated (blue, “+”) or uninoculated (orange, “-

“). Mean values are shown with larger solid circles, with ±1 standard error displayed as vertical 

bars above and below the mean. Values for individual plants are plotted with smaller, semi-

transparent circles. Different letters indicate significant pairwise differences at FDR < 0.05 

(Tukey’s post-hoc test). 
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Figure 1.8 Principal components analysis ordination of plant traits. 

Virus (BYDV-PAV-MI) and endophyte (combined E. ludwigii FCP2-01 and F. falciforme 

MC67) inoculations are represented by shape and color, respectively, with line segments 

connecting points in the same treatment groups to the mean coordinates of each group. 

Percentages on axes labels are how much of the variation in the dataset is accounted for by each 

principal component. 

 Observed endophyte communities in roots, as determined by qPCR for single copy genes 

for E. ludwigii FCP2-01 and F. falciforme MC67 normalized to a single-copy Brachypodium 

gene, showed effects of virus infection only for bacteria, not fungi. A lower normalized bacterial 

abundance was observed in the surface-sterilized roots from virus-infected plants compared to 

the virus-uninfected (Wilcoxon, W = 81, p = 0.0185; Figure 1.9). However, no differences were 

observed between virus-infected and uninfected condition for fungal abundance (W = 38, p = 

0.888) or the ratio of bacterial and fungal abundance (W = 52, p = 0.139). 
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Figure 1.9 Relative abundances of bacterial and fungal endophytes determined by qPCR in 

roots of Brachypodium. 

Normalized relative abundance by copy-number ratio of A) E. ludwigii FCP2-01 bacterial cells 

per plant cell, B) F. falciforme MC67 fungal cells per plant cell, and C) bacterial cells per fungal 

cell. Wilcoxon test p-values are displayed above the bars, comparing medians between virus-

uninfected (“-“) and virus-infected (“+”) plants. Individual values for each plant are displayed as 

semi-transparent circles, and the y-axis is log base 10 transformed. 

Discussion 

Inter-Kingdom microbial and endophyte-host interactions 

This research involved the characterization of multiple aspects of the interaction of 

bacterial and fungal endophytes with each other, their plant host, and a host-pathogenic virus. 

The endophyte partners were observed interacting in-vitro in potentially competitive ways, 

which is expected given the numerous niches these organisms co-occupy and previous observed 

interactions (Kamensky et al., 2003; Mousa et al., 2016). 

 The effects on host biomass by the bacterial endophyte suggests this bacterium may be 

parasitic on the plant host, rather than acting as a mutualist, given the reductions in host biomass. 
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However, the consequences of reduced shoot biomass may not detriment host fitness (viable seed 

production), which was not measured in this experiment. This endophyte may provide a 

comparison to known plant-growth promoting endophytic bacteria (Ait Barka et al., 2006), given 

its negative impact on plant biomass, allowing for comparisons in infection mechanism and 

potential host selectivity. Contrary to the effect on biomass, the observed effect on root hair 

length may be important to adaptation to drought stress (He et al., 2015; Brown et al., 2012). 

Notably, E. ludwigii  FCP2-01 was selected for these experiments due to its favorable 

characteristics as a synthetic biology chassis (growth requirements, antibiotic susceptibility, and 

transformability) and known ability to infect and remain within Brachypodium roots. Selecting a 

bacterium based on its known effects on plant traits may have resulted in different observed 

interactions.  

 The results on bacterial infection in the plate growth experiment were contrary to the 

initial prediction and is incompatible with the “fungal highway” mechanism of host infection. 

The plants in this experiment were inoculated with the bacteria by seed coating, while the fungi 

were added 6 days after germination as plugs of colonized agar on the surface of the plant media. 

It appears likely that fungal infection of the roots competes with bacteria, and if the bacteria are 

already present, the hyphae may cause displacement. The lack of co-localization seen with 

CLSM supports the potential displacement of bacterial endophytes already present. An additional 

trial to consider is adding bacteria to the roots at the same time as the fungi, to test if together 

they more effectively colonize the available apoplast. However, this approach may be less 

comparable to in-field conditions, for which a prospective beneficial bacterial endophyte would 

likely be applied as a seed coating. 
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 The root apoplast provides a limited niche for colonization by endophytes, and the 

chronology of infection may influence the root endophyte communities’ final composition 

through priority effects (Fukami et al., 2010). Competing root colonizers have been known to 

reduce overall abundance of microbial biomass in mixed inoculums relative to monocultures 

(Engelmoer et al., 2014). Manipulating the timing of inoculation of may alter final abundances 

of microbes as well as the host’s characteristics. 

Measured in-vitro interactions were expected to be predictive of interactions in the plant, 

such as enhancement of fungal growth by the bacteria translating into greater infection of the 

host plant by the bacteria when co-inoculated with the given fungus. However, these effects were 

not demonstrated in the expected direction in a two-microbe axenic system. In a more 

complicated system resembling a natural community, such in-vitro interactions may determine 

which partners are successful in colonizing the root community. 

Plant trait changes from endophyte and virus inoculation 

The infection of Brachypodium with BDYV-PAV-MI showed expected effects on host 

plants – reduced height and reduction in biomass of both root and shoot organs (Riedell et al., 

2003), as well as altered biomass allocation with a lower root to shoot biomass ratio (Hoffman 

and Kolb, 1997). Because of the vascular impedance and ultimate nutrient deprivation of roots, 

these trait changes are to be expected, but root and shoot biomass effects of the virus are only 

sometimes negative, depending on cultivar (Hoffman and Kolb, 1997). Alternately, the reduced 

leaf area and area to height ratio associated with endophyte inoculation does not have a clear 

explanation. Production of phytohormones, such as gibberellic acids, by E. ludwigii FCP2-01 or 

F. falciforme MC67 could alter host architecture (Paleg, 1965; Waqas et al., 2012), as could 

interaction with immune response pathways (Ma et al., 2013; Li et al., 2014). 
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Root endophyte presence in response to viral inoculation 

The observed changes in the abundance of endophytic bacteria (specifically E. ludwigii) 

in the root tissue as a response to viral infection supports the importance of the host in 

structuring associated microbial communities, however the mechanism by which reduced 

bacterial infection occur is not apparent in this experiment. Because a smaller amount of 

photosynthate is being translocated into root tissues of plants infected by the, it is possible that 

this reduces the ability of bacteria to grow within root tissue. Yet, endophytic fungi (F. 

falciforme) grew at a similar abundance in roots of virus-infected and uninfected plants. An 

important caveat is that the ratio of bacteria and fungi (copy-number ratio of E. ludwigii rodA to 

F. falciforme EF1α) was not significantly different between BYDV-PAV-MI infected and non-

infected plants, and thus we cannot clearly ascertain that differential impacts on bacterial and 

fungal endophytes occurred. However, differential impacts remain possible and could be 

explained by plausible mechanisms. In this case, the bacteria and fungi may be consuming 

different nutrient sources within the root, a case of niche partitioning, which would relate 

reduced availability of a specific nutrient or resource with reduced abundance of the dependent 

organism (Stomp et al., 2004). Similar to nutrient-based niche partitioning, spatial partitioning 

(Schoener, 1974) could explain differential impacts, especially if some root tissues are 

disproportionately impacted by viral infection. A further investigation which examined the 

metabolic requirements and preferences of these endophytes, paired with metabolic sampling and 

characterization of virus-infected and uninfected plant roots, could support a nutrient-based niche 

partitioning model of root endophyte competition and coexistence, while further microscopic 

observations of the spatial organization of endophytes in the root and the impacts of BYDV-

PAV-MI on root tissue could support a spatial-based niche partitioning model. 
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An alternate model to niche partitioning is the role of the host’s immunity as a selective 

filter, which allows some organisms to grow in the root based on those organisms’ compatibility 

with host immune responses. The application of one stress, biotic or abiotic, can change the host 

susceptibility to other stresses (Prasch and Sonnewald, 2013), and could affect host genetic 

pathways such as those implicated in mediation of microbiome assembly (Stringlis et al., 2018; 

Chen et al., 2020). In humans, host genetic and immune factors are known to be associated with 

microbiome variation of specific taxa (Tang et al., 2020), while in plants, genetic variants have 

similarly been implicated in microbiome variation (VanWallendael et al., 2021). Viral infections 

in Brachypodium have been associated with alternative mRNA splicing for defense-related 

genes, which could alter immune responses to other microbial infections (Mandadi and 

Scholthof, 2015). Conducting gene expression analysis and examining known variants associated 

with microbiome interactions may indicate that specific immune response pathways or factors 

are responsible for the observed microbiome changes. A follow-up experiment based on the data 

presented assess the effect of inoculation of the same bacteria, fungi, and/or virus on expression 

of genes in host immune response pathways, but inoculants did not infect as expected and no 

differential expression was observed. 

Implications for understanding viral plant disease 

 Alterations in the host microbiome in response to BYDV infection allow for the 

possibility that the disease’s symptoms extend beyond the host’s tissue and include the 

community of microbes associated with the plant. The potential for feedback between the 

microbial community and host exists, whereby host disease leads to loss (or gain) of services 

provided by the microbial community. Feedbacks between plants and rhizospheric microbes can 

effect plant traits in later generations (Hu et al., 2018). If changes in microbial communities are 
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responsible for some symptoms of BYDV, microbial inoculations could attempt to complement 

lost services to reduce disease impacts. Yet, interaction effects were not observed for endophyte 

and viral inoculations in our experiments, which does not support the use of these specific 

inoculants as biocontrol for BYDV. Examining changes in complex natural communities may 

suggests specific traits lost in disease-associated microbiomes, and better inform the selection of 

biocontrol strains for managing BYDV. 

Limitations and future directions 

 The set of experiments presented here attempt to replicate complex microbiome assembly 

processes with a small synthetic community of endophytic fungi and bacteria and a plant-

pathogenic virus. Microbial traits are important to the assembly and function of a community 

(Wood et al., 2018), and thus the single strains that we used do not represent the diversity of 

traits or combinations of traits relevant to community assembly and function. Furthermore, in a 

complex 185-member synthetic community Finkel et al. (2020) showed that the addition of only 

a single bacterial genus (Variovorax) is largely responsible for the direction of effects on host 

traits. Without having assessed a more taxonomically and functionally diverse set of bacterial 

and fungal isolates, we cannot be confident that the interactions observed are common in plant 

microbiomes. Subsequent experiments should test a wider range of in vitro interactions and test 

how the direction and type (volatile, water film transport, antimicrobial compound secretion) 

may affect interactions within plant roots.  

Additionally, the limited number of traits assessed, the absence of bacteria-only and 

fungi-only treatments, a single inoculation schedule, and the unblocked experimental design 

could all be improved in later experiments to better understand the effects of each inoculant and 

account for environmental factors on observed traits. Looking forward, an understanding of the 
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mechanism of how viral disease impacts host microbiomes will require detailed assessment of 

the immune responses of the host, metabolic changes, and structural effects of viral disease, 

which can be linked to the immune recognition, metabolism, and spatial niche of the microbiome 

community members, respectively. 

Conclusion 

This study helps describe the organization of bacterial and fungal communities in roots as 

dependent on the interactions of the microbial partners. Bacterial endophytes are subject to 

displacement or inhibition by fungal partners later introduced to the system, suggesting that the 

root niche is restricted to a limited biomass of microbes and that competition is more likely than 

facilitation. While bacteria can move on fungal hyphae, the mechanism of bacteria on the 

rhizoplane entering roots by swimming on hyphal surfaces was not supported by these 

experiments. Both endophyte and viral inoculation of the Brachypodium host were associated 

with changes in plant traits, and the viral infection was associated with an altered microbial 

community occupying root tissue within reduced bacterial colonization. While the mechanism by 

which viral infection reduced endophytic bacterial presence but not fungal presence in the root is 

unknown. Connecting host disease to microbiome community assembly offers strategies to 

improve management of viral plant disease through the microbiome. 
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CHAPTER 2: CONSTAX2 – IMPROVED TAXONOMIC CLASSIFICATION OF 

ENVIRONMENTAL DNA MARKERS 

Abstract 

CONSTAX - the CONSensus TAXonomy classifier - was developed for accurate and 

reproducible taxonomic annotation of fungal rDNA amplicon sequences and is based upon a 

consensus approach of RDP, SINTAX, and UTAX algorithms. CONSTAX2 extends these 

features to classify prokaryotes as well as eukaryotes and incorporates BLAST-based classifiers 

to reduce classification errors. Additionally, CONSTAX2 implements a conda-installable, 

command line tool with improved classification metrics, faster training, multithreading support, 

capacity to incorporate external taxonomic databases, new isolate matching and high-level 

taxonomy tools, replete with documentation and example tutorials. 

Introduction 

High-throughput sequencing has revolutionized metagenomics and microbiome sciences 

(Di Bella et al., 2013). These culture-independent methods have revealed previously 

unrecognized microbial diversity and has allowed researchers to detect organisms occurring at 

extremely low abundances (Brown et al., 2015). Amplicon-based sequencing, which relies on 

amplification and sequencing of genetic markers such as the rRNA operon or protein-coding 

genes, is an extremely popular technique for studying microbiomes and microbial communities. 

Following sequencing, quality control, and demultiplexing, amplicon reads are clustered and 

representative sequences are classified taxonomically. Many algorithms have been developed to 

conduct the task of assigning taxonomy to environmental sequences. Some of the most popular 

include BLAST-based tools (Altschul et al., 1997; Bokulich et al., 2018), the Ribosomal 
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Database Project (RDP) naive Bayesian classifier (Wang et al., 2007), and the USEARCH 

algorithms SINTAX (Edgar, 2016) and UTAX (Edgar, 2013). 

While each of these tools can be implemented independently to assign taxonomy, a 

consensus-based approach was demonstrated to increase the accuracy and number of sequences 

with taxonomic assignments (Gdanetz et al., 2017). Since the original release of the CONSTAX 

classifier, we have found the need for improved ease of use, updated software compatibility, 

simpler installation, improved accuracy and adaptability, and application to bacteria or other 

organisms. To address these needs, an updated version, CONSTAX2, has been developed. 

Methods 

Data and code availability 

Shell, Python, and R code for running experiments and analyses, as well as data files for 

recreating figures are available at https://github.com/liberjul/CONSTAXv2_ms_code. 

CONSTAX2 algorithm 

CONSTAX2, known hereafter as “CONSTAX”, begins by taking an input database file, 

formatted as one downloaded from UNITE (Nilsson et al., 2019) or SILVA (Glöckner et al., 

2017) databases, and creating the necessary files for training the classifiers. SILVA-formatted 

databases have arbitrary ranks, which do not necessarily apply across all domains of life. To 

address this arbitrary ranking, SILVA taxonomy is assigned Rank 1 (equivalent to domain) to 

Rank n (lowest assigned rank). It is recommended to filter the SILVA database to a given 

domain (Bacteria, Archaea, Eukaryota) to preserve the meaning of assigned ranks, which can be 

performed with the “--select_by_keyword” option.  

Classification is completed with SINTAX, UTAX, and RDP without the “-b, --blast” 

flag, or with SINTAX, BLAST, and RDP with the “-b, --blast” flag. The BLAST search 
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implementation is comparable to that described in Bokulich et al. (2018). Each input sequence is 

searched against a BLAST database generated from the database file using the blastn algorithm. 

A maximum number of hits is returned according to “-m, --mhits”, which have an e-value equal 

to or below “-e, --evalue” and a proportion identity equal to or above “-p, --p_iden”. A 

confidence score is generated based on the greatest proportion of hits which agree at the given 

rank. SINTAX, UTAX, and RDP are already conventional classifiers, so no special rules are 

required. 

Returned taxonomy assignments from each classification method are reformatted to be 

consistent. Taxonomy assignments are then filtered according to the confidence threshold and 

combined to create a consensus with the following rules: 1) if no classifications are above 

threshold, no taxa is assigned; 2) if two or three classifications are above threshold and agree, the 

majority taxa is assigned; 3) if only one classification is above threshold, that taxa is assigned 

unless the “--conservative” flag is used, whereby no taxa is assigned; 4) if two or three 

classifications are above threshold and each is unique, the highest confidence taxa is assigned. 

Clade partition cross-validation 

We employed the approach used to validate the SINTAX classifier (Edgar, 2016), clade 

partition cross-validation (CPX), as a means to assess the ability for CONSTAX to classify both 

known and novel taxa. At both the family and genus ranks, records within sub-taxa (genera and 

species, respectively), were randomly partitioned to reference or query groupings. Singletons, 

families or genera with only one sub-taxon, were assigned to the query group as novel taxa. 

Sensitivity, misclassification rates, over-classification rates, and errors per query were calculated 

according to (Edgar, 2016), for UNITE and SILVA databases. Classification performance was 

assessed on 5 replicates for each partition (family and genus rank) and for UNITE fungal 
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representative sequences and SILVA bacterial ‘SSURef’ sequences. The same partitions were 

assessed with standard and conservative voting rules, and for commonly used regions of each 

marker. These regions were ITS1 and ITS2 from UNITE fungal sequences, extracted using ITSx 

(Bengtsson‐Palme et al., 2013), and the V3-4 and V4 hypervariable regions from SILVA 

bacterial sequences, extracted using in-silico PCR with primer sets 357wF-785R (Van Der Pol et 

al., 2019) and 515f-806R (Parada et al., 2016; Apprill et al., 2015) allowing for 3 mismatched 

bases. For the UNITE database, classification was implemented with UTAX and BLAST 

implementations, with individual and consensus assignments compared for both 

implementations. However, given the size of the SILVA SSURef database, training time for the 

UTAX implementation would exceed 100 hours per replicate. Therefore, only the performance 

of the BLAST implementation was assessed for the SILVA database. Both UNITE and SILVA 

datasets were compared to the qiime2-Naive-Bayes feature classifier (Bokulich et al., 2018), the 

mothur Wang classifier, the mothur k-nearest neighbors classifier with knn=3 (Schloss et al., 

2009), and Kraken 2 (Wood et al., 2019), while for UNITE the SPINGO (Allard et al., 2015) 

classifier was tested. 

Classification Counts 

Representative bacterial and fungal OTU sequences from Benucci et al. (2020) were 

classified with the BLAST CONSTAX implementation at recommended settings with the 

suggested UNITE and SILVA databases. The conservative voting rule was applied for the 

bacterial library, but not for the fungal library, given the results observed with CPX trials. 

Algorithm speed 

Runtime was determined for both training and classification steps using printed 

timestamps 1) before calling the CONSTAX executable, 2) after training completion within the 
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CONSTAX executable, written to STDOUT, and 3) after implementation of the CONSTAX 

executable. Training was performed on a single core on an Intel(R) Xeon(R) CPU E5-2680 v4 @ 

2.40GHz processor with 32 GB of requested memory. Each training database consisted of 500, 

1000, 2000, 4000, 8000, or 16,000 sequence records sampled from the reference databases of the 

SILVA CPX test sets. Classification was performed with 1, 4, 8, 16, 32, 64, and 96 cores on an 

Intel® Xeon® CPU E7-8867 v4 @ 2.40GHz processor with 16 GB of requested memory, using 

1000, 2000, or 4000 sequence records sampled from bacterial sequences in SILVA SSURef 

release 138. Training and classification were each performed with the default UTAX 

implementation or the “-b,--blast” BLAST implementation. 

Definition of classification metrics 

The classification performance framework from Edgar (2016) included the following 

classification performance metrics for clade-partition cross validation: 

 

(2.1) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃/𝑁𝑘𝑛𝑜𝑤𝑛  

(2.2) 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  𝐹𝑃𝑚𝑖𝑠/𝑁𝑘𝑛𝑜𝑤𝑛  

(2.3) 𝑂𝑣𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  𝐹𝑃𝑜𝑣𝑒𝑟/𝑁𝑛𝑜𝑣𝑒𝑙  

(2.4) 
𝐸𝑟𝑟𝑜𝑟𝑠 𝑝𝑒𝑟 𝑞𝑢𝑒𝑟𝑦 =

𝐹𝑃𝑚𝑖𝑠  +  𝐹𝑃𝑜𝑣𝑒𝑟

𝑁
 

 

Where 𝑁𝑘𝑛𝑜𝑤𝑛and 𝑁𝑛𝑜𝑣𝑒𝑙 are the number of queries known (at a rank above or equal to the 

partition level) and novel (at a rank below the partition level), 𝑇𝑃is the true positive predictions 

of known queries, 𝐹𝑃𝑚𝑖𝑠 is the number of false positive predictions of known queries, and 

𝐹𝑃𝑜𝑣𝑒𝑟 is the number of false positive predictions of novel queries. 𝑁is the total number of 

queries and the sum of 𝑁𝑘𝑛𝑜𝑤𝑛 and 𝑁𝑛𝑜𝑣𝑒𝑙. 



39 

 

Plotting and analysis 

Data generated via CONSTAX testing runs were parsed and reorganized with Python 

scripts, and uploaded into R 3.6.1 (R Core Team, 2019) for analysis. Plotting and preparation of 

tables were performed with tidyverse 1.3.0 (Wickham, Averick, et al., 2019), including tibble 

3.0.5 (Müller and Wickham, 2019), tidyr 1.1.2 (Wickham and Henry, 2020), dplyr 1.0.3 

(Wickham, François, et al., 2019), and forcats 0.5.0 (Wickham, 2020), and ggplot2 3.2.1 

(Wickham, 2016). Patchwork 1.0.0 (Pedersen, 2019) and maditr 0.7.4 (Demin, 2020) were used 

for figure preparation. Classification performance metrics were compared between classifiers at 

each region, partition level, and database using a generalized mixed effects model with glmer 

function in lme4 1.1-21 (Bates et al., 2015), in which classifier, partition level, and region are 

random effects and partition iteration is a fixed effect, and the metrics are modeled according to 

the binomial distribution.  

(2.5) 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐸𝑖𝑗𝑘 , 𝑁𝑖𝑗𝑘)~ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑖 + 𝑙𝑒𝑣𝑒𝑙𝑗 + 𝑟𝑒𝑔𝑖𝑜𝑛𝑘 + (1|𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)  

Where 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐸𝑖𝑗𝑘, 𝑁𝑖𝑗𝑘) is the logit-transformed proportion of errors (total errors, 

misclassifications, and over-classification) to their respective number of queries (total, known 

taxa, and novel taxa), 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑖 is the classification tool implemented, 𝑙𝑒𝑣𝑒𝑙𝑗 is the partition 

level (genus or family), 𝑟𝑒𝑔𝑖𝑜𝑛𝑘 is the region of sequence classified (Full, ITS1, or ITS2 for 

UNITE and Full, V3-4, or V4 for SILVA), and (1|𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛) is the pair of query-reference 

sequence sets (0-4, same sets for each classifier, level, and region). 

Pairwise comparisons were performed with emmeans 1.3.5 (Lenth, 2020) and multcomp 

1.4-13 (Hothorn et al., 2008). Several scripts involved the Python packages pandas (The pandas 

development team, 2020; McKinney, 2010), numpy (Harris et al., 2020), and xlsxwriter 

(McNamara, 2021). 
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Results 

Algorithm speed and memory usage 

The implementation of the BLAST algorithm as a third classifier and replacement of 

UTAX provides crucial speedup of the training step (Figure 2.1A), facilitating the use of the 

much larger SILVA database. For 16,000 sequences randomly sampled from the SILVA 

database, the BLAST implementation (including SINTAX, RDP, and BLAST) trained 370±32.1 

sequences∙s-1 (mean±SD), while the UTAX implementation (including SINTAX, RDP, and 

UTAX) trained 41.9±0.911 sequences∙s-1, an approximately 9-fold improvement. Furthermore, 

the BLAST implementation trains faster per sequence at larger database sizes. 

Although the BLAST implementation is faster for training, classification is faster with 

the UTAX implementation (Figure 2.1B). The maximum classification speed was achieved at 32 

threads for the BLAST implementation and between 4 and 8 threads for the UTAX 

implementation, depending on the number of query sequences classified, which minorly affected 

per-sequence rates. At 4000 query sequences, the BLAST implementation classified at a speed of 

16.3±0.298 sequences∙s-1 on 32 threads, while the UTAX implementation classified at a speed of 

34.4±0.611 sequences∙s-1 on 4 threads. 

Training with bacterial records in the SILVA 138 SSU release (1,983,818 sequences, 2.8 

Gb) with the BLAST implementation used 102.96 GB of RAM, while the fungal UNITE 

database (95,481 sequences, 60 Mb) used 15.24 GB for BLAST and 12.72 GB for UTAX 

implementations. Classification with the SILVA database with 16 threads used 28.16 GB for 500 

sequences and 30.88 GB for 1000 sequences, while the UNITE database used 6-7 GB, regardless 

of implementation, threads, or number of query sequences. 
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Algorithm performance 

Clade partitioned cross-validation and classification metrics from SINTAX (Edgar, 2016) 

were used (Supplementary Information) on each of the classifiers and consensus taxonomy 

assignments were compared for genus and family-level partitions as well as for full length ITS1-

5.8S-ITS2 or 16S regions (accounting for the commonly used subregions ITS1, ITS2, V4, V3-4) 

with errors per query (sum of false negative and false positive rates), over-classification (false 

positive rate of unknown taxa), and misclassification (false positive rate of known taxa), for 5 

query-reference paired datasets (Figure 2.1C-D, Table 2.1). The popular mothur knn and Wang 

classifiers (Schloss et al., 2009), qiime q2-feature-classifier plugin (Bokulich et al., 2018), 

Kraken 2 (Wood et al., 2019), and SPINGO (Allard et al., 2015) classifiers were compared using 

the same protocol. CONSTAX with the non-conservative consensus with BLAST had the fewest 

errors per query (EPQ) for any classifier (0.236-0.248, 95% CI for all regions and partition 

levels), or tied for fewest with the UTAX consensus, across the UNITE dataset. Alternatively, 

CONSTAX with the conservative consensus with BLAST had the fewest errors for all 

classifications in the SILVA dataset (EPQ=0.214-0.259). The BLAST implementation was 

valuable in decreasing misclassifications for the UNITE dataset compared to UTAX, but this was 

generally associated with increased (erroneous) over-classifications. The effect of the “-c,--conf” 

and “-m,--mhits” parameters on classification performance in shown for UNITE (Figure 2.2) and 

SILVA (Figure 2.3) datasets. The number of classifying representative sequences (OTUs) varied 

between classifiers and datasets, with more bacterial sequences classified at high ranks but fewer 

at low ranks compared to UNITE (Figure 2.4). 
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Figure 2.1 Performance of the CONSTAX algorithm. 

A) Reference sequences parsed per second for training of the CONSTAX implementation with 

BLAST and UTAX, as a function of the size of the training set. B) Sequences classified per 

second with BLAST and UTAX implementations, as a function of query set size and threads 

used for parallelization. C-D) Classification performance resulting from clade-partition cross-

validation, at genus and family partition ranks, for full and extracted regions, corresponding to 

each CONSTAX classifier and other common classification tools, for C) Bacteria in the SILVA 

SSURef release 138 dataset and D) Fungi in the UNITE RepS Feb 4 2020 general release. CB - 

CONSTAX with BLAST, CBC - CONSTAX with BLAST and conservative rule, CU - 

CONSTAX with UTAX, CUC - CONSTAX with UTAX and conservative rule. 
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Partition level Family 

 Classifier BLAST RDP SINTAX UTAX 
mothur-

wang 

mothur-

knn=3 

qiime2-

Naive-

Bayes 

Kraken2 SPINGO CB CBC CU CUC 

 Full 

EPQ 
20.3±0.7 

(G) 
23.4±1.2 (D) 23.7±1 (B) 31.1±2 (I) 30.2±2.4 (J) 28.7±2.6 (F) 

32.2±2.6 

(H) 
27.1±0.8 (E) 28.3±1.5 (K) 

20.8±0.5 

(A) 
21.4±0.8 (C) 22±0.6 (A) 

24.3±1.2 

(D) 

MC 26.4±0.8 (J) 30.3±1.7 (F) 32.3±1.5 (D) 43.2±2.8 (L) 39±2.6 (K) 36.6±3.6 (G) 36.3±2.9 (I) 6.1±0.8 (A) 31.1±2 (M) 24.8±0.6 (B) 29.2±1.1 (E) 28.1±0.9 (C) 
33.4±1.8 

(H) 

OC 5.1±0.6 (H) 6.2±0.8 (E) 2.1±0.4 (D) 0.7±0.1 (A) 7.9±2 (F) 9±1.9 (I) 21.8±2.9 (L) 
79.6±1.9 

(M) 
21.3±1.4 (K) 10.7±0.8 (J) 2±0.2 (C) 6.8±0.9 (G) 1.6±0.3 (B) 

UNITE ITS1 

EPQ 
40.3±1.4 

(G) 
32.4±1.6 (D) 28.5±1.4 (B) 38.7±0.9 (I) 40.4±1.7 (J) 32.3±1.8 (F) 

36.1±1.2 

(H) 
32.3±1.5 (E) 63.7±3.7 (K) 

28.8±1.1 

(A) 
31±1.6 (C) 28.5±1.4 (A) 

32.1±1.5 

(D) 

MC 54.2±2.1 (J) 44.2±2.3 (F) 39±1.9 (D) 53.8±1.3 (L) 55.5±2.4 (K) 41.7±2.6 (G) 44.5±2.2 (I) 18.6±2.4 (A) 
88.2±5.6 

(M) 
36.9±1.7 (B) 42.6±2.2 (E) 38.4±1.9 (C) 

44.3±2.2 

(H) 

OC 5.7±0.8 (H) 2.9±0.5 (E) 2.3±0.3 (D) 1±0.1 (A) 2.7±0.8 (F) 8.6±1.1 (I) 15.3±1.8 (L) 
66.4±2.3 

(M) 
2.4±1.2 (K) 8.4±0.7 (J) 1.9±0.4 (C) 4±0.5 (G) 1.6±0.3 (B) 

 ITS2 

EPQ 
37.9±1.9 

(G) 
30.7±2.1 (D) 26.3±1.7 (B) 36.4±1.6 (I) 37.6±1.7 (J) 30.6±2.5 (F) 

35.1±1.2 

(H) 
30.4±1.4 (E) 43.7±9.5 (K) 

27.2±1.8 

(A) 
29.1±1.8 (C) 26.6±1.8 (A) 30.2±2 (D) 

MC 50.4±2.6 (J) 41.6±2.8 (F) 35.7±2.1 (D) 50.4±2.2 (L) 51.1±2.7 (K) 39.3±3.2 (G) 41.6±3 (I) 15.2±1.9 (A) 
56.5±13.7 

(M) 
34.3±1.9 (B) 39.8±2.4 (E) 35.4±2.1 (C) 

41.5±2.7 

(H) 

OC 6.7±1.5 (H) 3.2±0.7 (E) 2.7±0.8 (D) 1.2±0.2 (A) 3.7±1 (F) 8.9±1.8 (I) 18.9±3.5 (L) 
68.5±2.2 

(M) 
11.5±1.4 (K) 9.6±2 (J) 2.2±0.5 (C) 4.5±1.2 (G) 1.8±0.4 (B) 

 Full 

EPQ 26.3±2.9 (B) 26.5±3.6 (C) 22.8±2.3 (B)   
32.5±11.6 

(D) 
25.6±1.9 (D) 

66.3±20.4 

(F) 
70.3±0.1 (E)   29.1±3.9 (C) 20.9±2.5 (A)     

MC 
26.4±1.8 

(A) 
29.7±2.3 (C) 31.9±1.6 (E)   

39.3±19.5 

(E) 
28.8±2.3 (D) 

66.6±22.4 

(F) 
98.3±0.2 (G)  26.7±2.2 

(A) 
28.3±2 (B)     

OC 26.5±6.5 (F) 
19.3±6.2 

(CD) 
1.8±1.3 (B)   15.6±9.4 (C) 17.7±4.3 (D) 

65.6±23.8 

(H) 
0.1±0.1 (E)   

35.2±8.5 

(G) 
3.7±1.5 (A)     

SILVA V3-4 

EPQ 27.9±1.2 (B) 29.8±3.5 (C) 29.9±3 (B)   29.7±2.9 (D) 32.6±2.9 (D) 31.3±2.1 (F) 20.5±1.3 (E)  29.1±3.4 (C) 26±2.5 (A)     

MC 31.2±1 (A) 35.7±3.4 (C) 39.6±3.4 (E)   34.6±3.6 (E) 39.2±4.2 (D) 33.2±4 (F) 17.2±1.2 (G)   
32.2±2.7 

(A) 
34.9±3 (B)     

OC 20.8±4 (F) 
16.4±4.1 

(CD) 
7.9±3.4 (B)   17.4±4.9 (C) 16±2.6 (D) 

26.6±5.6 

(H) 
29±2.3 (E)   

21.6±15.3 

(G) 
5.6±1.7 (A)     

 V4 

EPQ 28.6±2.7 (B) 29.6±2.4 (C) 30.4±1.6 (B)   30±1.9 (D) 32.3±2.6 (D) 29.6±2 (F) 22.1±2.1 (E)   28.5±3.3 (C) 25.3±1.8 (A)     

MC 
33.1±3.5 

(A) 
38.3±3.1 (C) 39.4±1.4 (E)   37.6±3.1 (E) 39.8±3.6 (D) 32.7±2 (F) 20.8±2.3 (G)  32.8±2.5 

(A) 
34.4±2.6 (B)     

OC 18.8±4.1 (F) 
9.8±5.5 

(CD) 
9.8±3.7 (B)   10.8±5 (C) 13.5±2.3 (D) 

21.8±3.4 

(H) 
25.4±2.9 (E)   18.7±13 (G) 4.8±1.3 (A)     

Table 2.1 Classification performance of each classifier, for each database, region, and 

partition level. 

Values are percentages: mean±SD, with entries sharing letters are not significantly different at 

FDR < 0.01 for a given database, region, and partition level, as determined by a generalized 

linear mixed model using a binomial distribution, with region and classifier as random effects 

and partition iterations as a blocking effect. Performance metrics are defined in Supplementary 

Information. CB - CONSTAX with BLAST, CBC - CONSTAX with BLAST and conservative 

rule, CU - CONSTAX with UTAX, CUC - CONSTAX with UTAX and conservative rule. 
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Table 2.1 (cont’d) 

Partition level Genus 

 Classifier BLAST RDP SINTAX UTAX 
mothur-

wang 

mothur-

knn=3 

qiime2-

Naive-

Bayes 

Kraken2 SPINGO CB CBC CU CUC 

UNITE 

Full 

EPQ 19±0.8 (G) 
21.2±0.8 

(D) 
22.6±0.9 (C) 

34.3±1.8 

(H) 

38.9±1.9 

(K) 
35.7±1.9 (I) 38.1±1.9 (J) 20.8±2.4 (F) 

42.1±11.8 

(L) 

18.9±0.7 

(A) 
20.2±0.8 (C) 20.9±0.8 (B) 22.9±0.8 (E) 

MC 22±1 (G) 23.2±0.8 (E) 26.3±1 (D) 
39.9±2.1 

(H) 

43.2±1.8 

(K) 
41.4±2.4 (I) 40.5±1.9 (J) 

14.8±4.5 

(A) 

44.7±15.4 

(L) 
20.4±0.7 (B) 

23.5±0.9 

(D) 
22.8±0.8 (C) 26.6±1 (F) 

OC 0.6±0.2 (C) 9.2±0.8 (D) 

0±0 

(ABCDEFG

H) 

0.4±0.1 (A) 13±4.5 (E) 1.5±1.3 (B) 
23.5±4.7 

(G) 

56.9±10.6 

(H) 
26.7±9.9 (F) 9.6±0.9 (E) 0.1±0 (A) 9.3±0.8 (D) 0.4±0.1 (A) 

ITS1 

EPQ 
35.1±1.8 

(G) 

29.2±1.1 

(D) 
26.2±0.8 (C) 

39.7±1.2 

(H) 

48.5±2.9 

(K) 
39±2.2 (I) 47.8±9 (J) 31±6.1 (F) 78.9±7.8 (L) 25.6±1 (A) 27.8±1.1 (C) 26.4±0.9 (B) 28.8±1.1 (E) 

MC 40.3±2 (G) 33.3±1.3 (E) 30.6±1 (D) 
46.3±1.4 

(H) 

55.7±3.5 

(K) 
45.2±2.8 (I) 

53.4±11.8 

(J) 

28.5±9.3 

(A) 
91.8±9.7 (L) 28.5±1.1 (B) 

32.3±1.3 

(D) 
30±1 (C) 33.5±1.3 (F) 

OC 4.2±0.4 (C) 4.7±0.5 (D) 

0±0 

(ABCDEFG

H) 

0.7±0.2 (A) 5.4±1.2 (E) 2±1.8 (B) 
14.1±8.6 

(G) 

46.3±13.1 

(H) 
2±3.9 (F) 8±0.8 (E) 0.8±0.1 (A) 4.7±0.5 (D) 0.7±0.1 (A) 

ITS2 

EPQ 
30.7±1.9 

(G) 

26.2±1.3 

(D) 
23.4±1 (C) 

36.6±1.1 

(H) 

46.5±1.4 

(K) 
38.5±2.3 (I) 42±2 (J) 27.9±5.1 (F) 

48.9±11.4 

(L) 
23±1.1 (A) 24.7±1.2 (C) 23.7±1.1 (B) 25.8±1.2 (E) 

MC 
35.3±2.2 

(G) 
29.8±1.3 (E) 

27.2±1.1 

(D) 

42.6±1.3 

(H) 

53.1±1.7 

(K) 
44.5±2.8 (I) 45.7±2.2 (J) 

24.7±7.9 

(A) 
54.3±14 (L) 25.6±1.1 (B) 

28.7±1.4 

(D) 
26.8±1.1 (C) 30±1.4 (F) 

OC 3.5±0.4 (C) 4.7±1 (D) 

0±0 

(ABCDEFG

H) 

0.7±0.2 (A) 6.5±0.5 (E) 2.2±2 (B) 
19.8±2.5 

(G) 

47.5±12.3 

(H) 
16.3±4.5 (F) 7.6±1.1 (E) 0.6±0.1 (A) 4.7±1 (D) 0.6±0.2 (A) 

SILVA 

Full 

EPQ 
22.6±1.2 

(B) 
24.7±3 (C) 

25.1±1.3 

(D) 
  27.7±8.3 (E) 

34.3±13.8 

(G) 
37±22.6 (F) 

84.6±0.2 

(H) 
  25.5±2.3 (C) 

21.9±2.1 

(A) 
    

MC 
22.7±1.7 

(A) 

25.1±2.8 

(BC) 
29.3±1.5 (E)  29.7±9.3 (E) 38±17.2 (F) 

35.6±23.5 

(D) 

98.7±0.2 

(G) 
  24.3±2.4 (B) 25.5±2.4 (C)    

OC 22.4±2.6 (F) 22.2±4 (D) 

0±0 

(ABCDEFG

) 

  16.1±10 (B) 12.1±7.1 (C) 
45.5±17.2 

(G) 

0±0 

(ABCDEFG

) 

  32.8±2.8 (E) 0.3±0.2 (A)     

V3-4 

EPQ 
23.7±1.7 

(B) 
25.7±2.5 (C) 

26.9±2.4 

(D) 
 29.1±6.8 (E) 

30.3±4.6 

(G) 
25.6±2.4 (F) 

23.3±3.3 

(H) 
  24.7±3.2 (C) 23.2±2 (A)    

MC 24±1.9 (A) 
27.2±2.5 

(BC) 
31.3±2.8 (E)   32.7±8 (E) 33.4±5.7 (F) 26±2.2 (D) 

27.2±3.8 

(G) 
  26.7±1.8 (B) 27.1±2.3 (C)     

OC 21.9±6.1 (F) 
16.2±4.9 

(D) 

0±0 

(ABCDEFG

) 

  7.7±2.6 (B) 11.8±3.4 (C) 
23.7±7.3 

(G) 

0±0 

(ABCDEFG

) 

  13.2±19 (E) 0±0 (A)     

V4 

EPQ 
25.9±1.4 

(B) 
26.1±2.2 (C) 

28.8±1.4 

(D) 
  29.5±7.6 (E) 32.3±4 (G) 26.1±1.8 (F) 

26.6±2.6 

(H) 
  25.8±2.3 (C) 24.9±2 (A)     

MC 
27.2±1.4 

(A) 

28.9±2.4 

(BC) 
33.7±1.6 (E)  33.1±8.8 (E) 35.6±4.8 (F) 

27.8±2.2 

(D) 
31±3 (G)   28.3±1.6 (B) 29±2.3 (C)    

OC 18.4±4.5 (F) 9.5±3.3 (D) 

0±0 

(ABCDEFG

) 

  7.5±4.3 (B) 12.6±4 (C) 
15.4±4.5 

(G) 

0±0 

(ABCDEFG

) 

  
10.5±15.2 

(E) 
0.3±0.6 (A)     
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Figure 2.2 Effects of max hits and confidence threshold parameters on UNITE 

classification. 

Errors per Query, Misclassification, Over-classification, and Sensitivity were determined using 

Clade-Partition Cross Validation while varying the “--mhits” (A) or “--conf” (B) parameters on 

1000 query sequences from the UNITE Fungi database. Confidence threshold effects were 

compared at both 5 and 20 max hits. 
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Figure 2.3 Effect of max hits and confidence threshold parameters on SILVA classification. 

Errors per Query, Misclassification, Over-classification, and Sensitivity were determined using 

Clade-Partition Cross Validation while varying the “--mhits” (A) or “--conf” (B) parameters on 

1000 query sequences from the SILVA SSURef release 138.  
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Figure 2.4 Classification counts for each classifier and the CONSTAX classification. 

OTUs from Benucci et al. 2020 (Benucci et al., 2020), 500 each from bacterial and fungal 

libraries, which have been classified using databases for bacteria and fungi at recommended 

settings. Counts indicate the number of OTUs which had a taxon assigned at or above the 

confidence threshold of 0.8 at each rank. For bacteria, rank 1 corresponds to domain and 

decreases with higher rank numbers. 

Implementation 

CONSTAX is released as a conda-installable command-line tool, available from the 

bioconda installation channel (Grüning et al., 2018) for LinuxOS, MacOS, and WSL systems. It 

is installed with the command “conda install -c bioconda constax”, see 

https://github.com/liberjul/CONSTAXv2. CONSTAX requires two files: 1) “-d, --db” a 

reference database file in FASTA format (Pearson and Lipman, 1988) with header lines 

containing taxonomy of the sequences in SILVA (Glöckner et al., 2017) or UNITE (Nilsson et 

al., 2019) style, and 2) “-i, --input” an input file of user-submitted query sequences in FASTA 

format. This version implements a BLAST classification algorithm instead of the legacy UTAX 

classifier if the “-b, --blast” flag is used.  

The user may designate several additional parameters, including confidence threshold for 

assignment (“-c, --conf”), BLAST classifier parameters, and whether to use a conservative 
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consensus rule (“--conservative”), which requires agreement of two (instead of one) non-null 

assignments to assign a taxonomy at the given rank. CONSTAX offers multithreaded 

classification with the argument, “-n, --num_threads”. 

CONSTAX generates three directories while running: 1) training files directory (“-f, --

trainfile”), 2) taxonomy assignments directory (“-x, --tax”), and 3) an output directory (“-o, --

output”). Prior to classifying sequences, training must be performed on any newly used database 

file with the “-t, --train” flag. After initial training, generated training files can be used in any 

later run by designating the same training files directory. When training is performed, 

CONSTAX will automatically generate formatted database files required by each classifier, as 

long as the supplied database has SILVA or UNITE header formatting. Following training, the 

classification or search command is performed for each classifier, and files are output to the 

taxonomic assignments directory. Finally, each classification output is reformatted and used to 

generate a consensus hierarchical taxonomy, then each classifier’s result and the consensus result 

are stored in the output directory as tab-delimited value files with each row corresponding to a 

query sequence and values as the hierarchical taxonomy assigned to each query. 

CONSTAX2 offers two additional features: 1) the ability to match input sequences to 

isolates using the “--isolates” option; and 2) the ability to determine higher-level taxonomy using 

representative databases with the “--high_level_db” option. Both approaches implement the 

BLAST algorithm to associate input sequences with hits from the respective databases, returning 

a single best hit with a default threshold of query cover ≥ 75% and E value ≤ 10. Cutoffs for 

query coverage and percent identity can be specified.  Isolate matching is designed to find best 

matches to sequenced organisms in pure culture, which may streamline culture-dependent and 

culture-independent analyses, and can also be used to implicate potential contamination by 
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association with known isolates previously worked with in the laboratory or sequencing facility 

where the samples were processed. Higher-level taxonomy designations are also useful in 

filtering host, organelles, or non-target taxa, which may show up in rDNA surveys. For 16S 

rDNA prokaryote datasets the latest SILVA SSURef NR99 database is recommended, while the 

latest UNITE Eukaryotes database is recommended for ITS studies of Fungi. 

Conclusion 

The newest implementation of CONSTAX offers improvement over its predecessor by 

ease of use, and improved applicability and accuracy. Hierarchical taxonomy classification 

accuracy by a consensus approach in CONSTAX2 is demonstrated to outperform commonly 

used classifiers while remaining computationally feasible. 
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CHAPTER 3: LEAF LITTER FUNGAL COMMUNITIES REFLECT PRE-SENESCENT 

LEAF COMMUNITIES IN A TEMPERATE FOREST ECOSYSTEM 

Abstract 

Fungal communities are known to contribute to living plant microbiomes and affect vital 

ecosystem services, such as pathogen resistance and nutrient cycling. Yet, factors that drive 

structure and function of phyllosphere mycobiomes and their fate in leaf litter require further 

research. We sought to determine the factors contributing to the composition of communities in 

temperate forest substrates, with culture-independent amplicon sequencing of fungal 

communities of pre-senescent leaf surfaces, internal tissues, leaf litter, underlying humus soil of 

co-occurring red maple (Acer rubrum) and shagbark hickory (Carya ovata). Paired samples were 

taken at five sites within a temperate forest in southern Michigan, USA. Fungal communities 

were differentiable based on substrate, host species, and site with significant variable 

interactions. Ordination and co-occurrence of taxa indicate that soil communities are unique 

from both phyllosphere and leaf litter communities. Correspondence of endophyte, epiphyte, and 

litter communities suggests dispersal of fungal taxa between these niches. Fungal communities 

are known to contribute to living plant microbiomes and affect vital ecosystem services, such as 

pathogen resistance and nutrient cycling. Yet, factors that drive structure and function of 

phyllosphere mycobiomes and their fate in leaf litter require further research. We sought to 

determine the factors contributing to the composition of communities in temperate forest 

substrates, with culture-independent amplicon sequencing of fungal communities of pre-

senescent leaf surfaces, internal tissues, leaf litter, and underlying humus soil. Two host plant 

species were sampled at five sites within a temperate forest in southern Michigan, USA. Fungal 

communities were differentiable based on substrate, host species, and site with significant 
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variable interactions. Ordination and co-occurrence of taxa indicate that soil communities are 

unique from both phyllosphere and leaf litter communities. Correspondence of endophyte, 

epiphyte, and litter communities suggests dispersal of fungal taxa between these niches. 

Introduction 

Plant and soil microbiomes contribute to critical ecosystem functions (Wagg et al., 2019; 

Delgado-Baquerizo et al., 2016) and complex interactions within communities (Regalado et al., 

2020). Fungi are important members of these microbial communities, and collectively they 

inhabit leaf and twig surfaces, rhizosphere, soil, and dead plant tissues. The community of fungi 

present in the plant microbiome can colonize healthy roots, leaves, stems, and seeds (Porras-

Alfaro and Bayman, 2011; Floc’h et al., 2020) and have been implicated in disease susceptibility 

(Gu et al., 2020), nutrient acquisition and cycling (Herzog et al., 2019), and stress tolerance or 

resilience (Waller et al., 2005; Márquez et al., 2007). Yet, fungi also occupy several critical roles 

in the plant and soil microbial communities, functioning as plant pathogens (Brader et al., 2017), 

hyperparasites (Falk et al., 1995; Vandermeer et al., 2009), mycorrhizal associates 

(Soudzilovskaia et al., 2019), saprobes (Zhou and Hyde, 2001), and specialized litter (Osono, 

2007) or wood degraders (Schilling et al., 2020).  Studying the distribution of fungal taxa within 

environments and between living and non-living substrates may elucidate the natural history and 

functional ecology of these organisms (Peay, 2014). 

Fungal endophytes are defined as living asymptomatically within plant tissues (Arnold et 

al., 2000). The diversity and composition of endophytes can be distinguished from epiphytic 

communities, the microbes observed on surfaces of plant tissues, but some overlapping taxa are 

common (Gomes et al., 2018; Yao et al., 2019). In fact, in many cases epiphyte communities are 

presumed to give rise to endophyte communities, as they penetrate openings, such as stomata or 
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damaged tissues (Porras-Alfaro and Bayman, 2011). Some authors have hypothesized potential 

ecological roles of endophytic fungi, including as plant pathogens, latent saprotrophs, or 

mutualists (Veneault-Fourrey and Martin, 2011; Chen et al., 2018; Brader et al., 2017). 

Following senescence of above-ground tissues, some of the endophytes and epiphytes 

(collectively the phyllosphere community) may switch nutritional modes to become active 

saprotrophs (Promputtha et al., 2007; He et al., 2012; Gundel et al., 2017) in forest floor leaf 

litter communities. 

Examinations of plant-associated fungal communities have implicated multiple drivers in 

community composition and structure. Rhizosphere communities have shown to be structured in-

part by plant host species, location, and land-use effects (Schöps et al., 2020; Bonito et al., 

2019). Similarly, aboveground tree endophytes showed significant discrimination based on plant 

tissue, host species, and site in a hemiboreal forest (Küngas et al., 2020). Similar patterns have 

been observed for leaf endophytes, which may be associated with leaf secondary metabolites in 

some cases (Christian et al., 2020).  

In the current study, we ask whether endophytic and epiphytic fungal phyllosphere 

communities of forest tree species differ, and whether phyllosphere fungal taxa persist in leaf 

litter or soil communities. To address these questions, fungal communities of pre-senescent 

leaves, leaf litter and soils were assessed with high-throughput amplicon sequencing and 

compared. We compared fungal communities of red maple (Acer rubrum L.) and shagbark 

hickory (Carya ovata (Mill.) K.Koch) host tree species at five sites within a forest ecosystem in 

southern Michigan where the species co-occur. Based on previous studies of fungal endophytes, 

we hypothesized that phyllosphere fungal communities between the two plant species would be 

similar. We also expected that many detected taxa would persist in leaf litter samples, and less so 
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in soils. To determine how these niches structured communities, we sampled across four forest 

substrates: 1) the surface of pre-senescent leaves, 2) the internal tissues of pre-senescent leaves, 

3) leaf litter, and 4) the soil in direct contact with the leaf litter.  

Sampling protocols and downstream sample processing can have overlooked effects on 

the microbial community analyses (Hallmaier-Wacker et al., 2018). The methods and materials 

chosen can bias the community observed through DNA extraction and PCR/primer decisions 

(Brooks et al., 2015). While much research has focused on comparison of kit or DNA extraction 

methods (Angebault et al., 2020; Brooks et al., 2015; Hallmaier-Wacker et al., 2018; Vo and 

Jedlicka, 2014), we did not find literature assessing swab material type for observation of 

phyllosphere communities. A second aim of this study was to compare the efficacy of swab types 

composed of two different materials in assessing epiphytic leaf communities with the goal of 

promoting cost-efficient yet consistent and thorough environmental sampling. 

Methods 

Site 

Samples were collected within a 9-hectare quadrat in a semi-homogeneous deciduous 

forest site within Dansville State Game Area, Dansville, Michigan, USA (N 42.5171, W 

84.3260, altitude 291 m). Soil types in the quadrat included loam, sandy loam, and loamy sand, 

and fall under the following USDA soil taxonomy classifications: Oxyaquic Glossudalfs, Typic 

Endoaquolls, Aquollic Hapludalfs, Aquic Arenic Hapludalfs (Figure 3.1). Mean annual climate 

observed at Jackson County Airport, 30.7 km SSW of the site, was 800 mm precipitation, 9.1°C 

temperature, and 69% relative humidity. Altitude measurements were performed using Google 
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Earth Pro (ver. 7.3.2). Distances between sites were determined using the “Measure distance” 

function in Google Maps. 

 

Figure 3.1 Soil types in the sampling quadrat. 

(Co) Colwood-Brookston loams; (KbA) Kibbie loam, 0 to 3 percent slopes; (OwB) Owosso-

Marlette sandy loams, 2 to 6 percent slopes; (SpB) Spinks loamy sand, 0 to 6 percent slopes; 

(SpC) Spinks loamy sand, 6 to 12 percent slopes, (ThA) Thetford loamy sand, 0 to 3 percent 

slopes. 
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Sample collection 

Samples were collected on September 16, 2018 from five sites 76-246m apart (Table 3.1) 

selected within the study area described above. These include one site each in the northeast, 

northwest, southeast, southwest, and center areas on the quadrat. At each site at least one 

shagbark hickory tree (Carya ovata), one red maple tree (Acer rubrum) and a suitable amount of 

host leaf litter beneath the canopy of sampled trees were present. We selected these trees as they 

were consistently found across the forest, providing the opportunity to test site effects. The litter 

collected was intact leaves of the target host, that were presumed to have fallen the previous 

year. Ten fresh leaves (Acer) or leaflets (Carya) per site and tree were collected axenically from 

branches within reaching or jumping height (<3 m from ground) and swabbed in the field, then 

transported to the laboratory for further processing. The entire surface of the leaf or leaflet, both 

top and bottom, was swabbed for those used. For each site and tree, three leaves or leaflets of 

litter were collected (separately for each host species), and the topsoil (mull humus) immediately 

below the leaves was collected with a sterilized metal scoop. All collected leaf and soil materials 

were stored in sealed plastic bags, placed in an insulated cooler, brought directly back to the lab, 

and stored at 4°C until processing (over the following week). All samples of a given substrate 

were processed on the same day. 

 Site 2 Site 3 Site 4 Site 5 

Site 1 170.43 242.77 246.20 123.66 

Site 2 - 145.00 76.29 109.95 

Site 3 - - 137.90 244.50 

Site 4 - - - 177.50 

Table 3.1 Distances between sample sites. 

Straight-line distances in meters are between row-column pairs of sites. 

Ten leaves or leaflets of each tree at each site were swabbed with two swabs that were 

dipped in Extraction Solution (ES - 100 mM Tris, 250 mM KCl, 10 mM disodium EDTA, 
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adjusted to pH 9.5-10) directly prior to sampling, producing two extractions per tree and site. 

Leaves were swabbed with both cotton-tipped applicators and polymer-tipped PurFlock 

ULTRA® applicators (Puritan Medical Products, Guilford, Maine, USA) referred to as “cotton” 

and “synthetic”, respectively. Swab heads were broken off into individual 2 mL microcentrifuge 

tubes and frozen at -20°C until processing. A sterile head of each swab type was placed into ES, 

exposed to air briefly (30 sec), and placed into the ES to serve as negative controls. 

Sample preparation and DNA extraction 

Prior to extraction, 500 μL ES was added to each tube containing a swab head. Tubes 

were heated to 95°C for 10 minutes to lyse cells. 500 μL of 3% bovine serum albumin (BSA) 

was then added to the tubes to stabilize the reaction. This product was mixed, spun down, and the 

supernatant was used as template for subsequent PCR reactions (Bonito et al., 2017). To clean 

and surface sanitize leaves, collected leaf materials were first placed in a solution composed of 

10% bleach (0.6% active sodium hypochlorite) and 0.1% Tween 20 and agitated for 7 minutes, 

followed by rinsing in sterile water and drying with sterile filter paper. Surface-sanitized leaves 

were placed in wax paper bags and lyophilized. Leaf litter was also lyophilized. Leaf litter was 

not treated to the same epiphyte/endophyte sampling given its non-living and fragile state. 

Leaves and leaf litter were pooled by host species and site. These composite samples were 

ground with 6 mm ceramic beads in 50 mL centrifuge tubes for 5 - 10 minutes using a modified 

paint shaker (DC-1-C, Miracle Paint Rejuvenator Co, Grove Heights, MN; modified by the 

Michigan State University Physics Shop). 

DNA was extracted from lyophilized plant tissue using the Mag-Bind® Plant DNA Kit 

(Omega Bio-tek, Norcross, GA, USA), with the recommended ~15 mg of dry tissue. Soil 

samples were dried with silica gel beads and homogenized, then DNA was extracted from ~0.5 g 
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of processed soils with the PowerMag® Soil DNA Isolation Kit (Qiagen, Carlsbad, CA, USA) 

following manufacturer's recommendations. 

Fungal amplicon libraries were generated with ITS1f-ITS4 primers (Gardes and Bruns, 

1993; White et al., 1990) and DreamTaq Green DNA Polymerase (ThermoFisher Scientific, 

USA) following previously described protocols (Lundberg et al., 2013; Chen et al., 2018). Six 

PCR no-template negative controls were included in library preparation and sequencing. PCR 

products were visualized under UV light on an ethidium bromide-stained 0.9% agarose gel after 

separation by electrophoresis. DNA concentrations of samples were normalized with a 

SequalPrepTM Normalization Plate Kit (ThermoFisher Scientific, USA) and samples were then 

pooled into a single library. Amplicons were then concentrated 20:1 with Amicon® Ultra 0.5 mL 

50K filters (EMDmillipore, Germany) and purified with Agencourt AMPure XP magnetic beads 

(Beckman Coulter, USA). A synthetic mock community with 12 taxa and 4 negative (no DNA 

added) controls were included to assess sequencing quality (Palmer et al., 2018). Amplicons 

were sequenced on an Illumina MiSeq analyzer using the v3 600 cycles kit (Illumina, USA). 

Sequence analysis 

Read quality was assessed with FastQC (Andrews, 2010). Sequences were then 

demultiplexed in QIIME (Caporaso et al., 2010). Primers were trimmed with Cutadapt 1.18 

(Martin, 2011), and the conserved regions trimmed with usearch -fastq_filter (Edgar, 2010). 

Filtered and trimmed reads were then clustered into operational taxonomic units (OTUs) based 

on 97% sequence similarity with the uparse pipeline (Edgar, 2013). Fungal OTU classification 

was determined with the CONSTAX2 consensus technique comparing RDP Classifier, BLAST, 

and SINTAX algorithms trained on the UNITE fungal general release dataset from Feb 04, 2020 

(Abarenkov et al., 2020) with 80% confidence threshold and recommended settings (Liber et al., 
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2021). Statistical analyses and plots were prepared in R version 3.6.1 (R Core Team, 2019) using 

the following packages for plotting and data handling: ggplot2 3.2.1 (Wickham, 2016), 

patchwork 1.0.0 (Pedersen, 2019), tidyr 1.0.2 (Wickham and Henry, 2020), dplyr 0.8.3 

(Wickham, François, et al., 2019), purrr 0.3.2 (Henry and Wickham, 2019), ggpubr 0.2.3 

(Kassambara, 2019), gplots 3.0.3 (Warnes et al., 2020). OTU data, tables, and scripts for 

statistical analysis and plotting are available at: 

https://github.com/liberjul/Leaf_litter_communities. 

Further identification of indicator OTUs that were poorly classified was completed based 

upon BLASTn searches (Altschul et al., 1990) against the Fungal RefSeq ITS nucleotide 

database with default search settings. Taxa were classified based the following prioritized rules: 

1) If 1 taxa was greater than 99.5% identity and 100% query cover, the species rank was 

assigned, 2) if multiple taxa were greater than 95% identity and 100% query cover, the lowest 

rank in common was assigned, 3) if at least five taxa had greater than 80% identity and 100% 

query cover, the lowest rank in common was assigned, 4) if fewer than five taxa with 80% 

identity and 100% query cover, no taxa was assigned. 

Ecological analysis 

A rarefaction curve (rarecurve function in vegan 2.5-6) (Oksanen et al., 2019) and OTU 

table were generated by rarefying to a minimum acceptable depth (function rrarefy from vegan). 

Within-sample (alpha) diversity was estimated with phyloseq 1.26.0 (McMurdie and Holmes, 

2013) with both Shannon (Shannon, 1948) and Simpson (Simpson, 1949) diversity indices. Both 

indices are shown to be minimally biased, but the Shannon index weights rare species more 

heavily compared to the Simpson index (Mouillot and Leprêtre, 1999). Effects of substrate, host 

species, and site on within-sample diversity were examined with linear models. Site was used as 

https://github.com/liberjul/Leaf_litter_communities
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a variable to account for variation due to host genotype, edaphic effects, and microenvironment 

not captured by substrate or host species effects. The fit of these models was compared with 

AICctab from bbmle 1.0.23.1(Anderson and Burnham, 2002; Bolker and R Development Core 

Team, 2020). Fungal community differences within and between substrates were visualized 

based on Bray-Curtis dissimilarities (Bray and Curtis, 1957). A Venn diagram and a table of 

shared OTUs were constructed in VennDiagram 1.6.20 (Chen, 2018) with OTUs having at least 

0.01% weighted abundance. Indicator taxa analysis was performed with rarefied OTU counts 

with the multipatt function in indicspecies 1.7.6 (De Cáceres and Legendre, 2009). 

Ordinations were performed first with PCoA (function cmdscale in vegan) with Bray-

Curtis dissimilarity, Sørensen-Dice similarity (Dice, 1945; Sørensen, 1948), and Jaccard 

similarity (Jaccard, 1901). Based on variance explained, Bray-Curtis dissimilarity was used for 

non-metric multidimensional scaling (NMDS) ordination (metaMDS in vegan). Substrate 

community compositions were compared with Bray-Curtis dissimilarity by PERMANOVA, for 

centroids (adonis2 function in vegan for full model, pairwise.perm.manova in RVAideMemoire 

0.9-75 for pairwise comparisons) (Hervé, 2020), and by PERMDISP, for dispersion (betadisper 

function in vegan). 

Swab material comparisons 

To compare the communities sampled by each swab material, PERMANOVA and 

PERMDISP were performed as described above for substrate, host species, and site comparisons. 

Swab materials were further compared by the number of reads sequenced per sample. The 

number of reads sequenced were modeled with a negative binomial mixed model with 

“glmer.nb” from package lme4 1.1-21 (Bates et al., 2015), with swab material as a fixed effect 

and leaf sampled as a random intercept effect.  
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Results 

Samples and sequencing 

In this study, a total of 50 samples were collected for fungal community analysis. These 

were derived from each of four substrates: leaf surface (20), leaf tissue (10), leaf litter (10), or 

soil (10), referred to hereafter as “epiphyte”, “endophyte”, “litter”, and “soil”. From these 

samples, amplicon sequencing generated 8,184,524 forward reads, which were reduced to 

5,859,924 after quality filtering and trimming. Raw reads have been deposited in NCBI SRA 

under BioProject PRJNA632843.  

Clustering OTUs at 97% sequence similarity resulted in 3402 OTUs. Any OTUs for 

which more than half of reads occurred in negative controls were labelled as possible cross-

contamination and excluded from further analysis, leaving 3366 OTUs in our sample matrix. A 

rarefaction curve was performed (Figure 3.2), which informed the rarefaction to 5926 reads per 

sample. After sample selection and rarefaction, 18 epiphyte, 10 endophyte, 8 leaf litter, and 10 

soil samples remained. 
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Figure 3.2 Rarefaction curves. 

Curves were determined using “rrarefy” in vegan to assess rarefaction depth to use for 

downstream analyses. A vertical line is positioned at the applied rarefaction depth. 

Comparison of substrates, host species, and site 

Rarefied OTU counts were ordinated through non-metric multidimensional scaling 

(NMDS) based upon Bray-Curtis dissimilarity. Bray-Curtis dissimilarity explained the most 

variance (34.6%) in the first two axes when ordinated with PCoA, compared to abundance-based 

Sørensen-Dice (32.6%) or incidence-based Jaccard (25.7%) indices. Dispersion was significant 
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between all substrates (p < 0.0001) and pairwise (Tukey’s HSD test, p < 0.05) between all pairs 

of substrates except Epiphyte-Endophyte (p = 0.99), and Soil-Litter (p = 1.00). 

Centroids, compared with Bray-Curtis dissimilarity between rarefied OTU counts, were 

significantly different between all substrates (p < 0.001) and pairwise (p < 0.005) comparisons 

based upon PERMANOVA. Substrate was the largest contributing variable to community 

composition (R2 = 0.308, p < 0.001), while host species (R2 = 0.075, p < 0.001) and site (R2 = 

0.086, p < 0.001) were also significant but contributed less (Table 3.2). All interactions were 

significant (p < 0.001) with substrate x site (R2 = 0.206), substrate x host species x site (R2 = 

0.122), and substrate x host species (R2 = 0.106) accounting for a substantial part of the 

variability. Mean within-sample (alpha) diversity was significantly different by substrate 

(ANOVA, p < 0.01) and by host species (p < 0.05) for both Shannon and Inverse Simpson 

indices, but notably not by site (p > 0.10) (Figure 3.3, Table 3.3). 

All-factor PERMANOVA test statistics 

Factor R2 F Pr(>F) 

Substrate 0.3079 19.62 0.001 

Host species 0.0751 14.37 0.001 

Site 0.0864 4.13 0.001 

Substrate:Host species 0.1057 6.74 0.001 

Substrate:Site 0.2063 3.29 0.001 

Host species:Site 0.0551 2.63 0.002 

Substrate:Host species:Site 0.1216 2.32 0.001 

Residual 0.0418   

Total 1 
  

Pairwise PERMANOVA comparisons by substrate  
Epiphytes Litter Soil 

Endophytes 0.0036 0.004 0.0015 

Epiphytes - 0.0015 0.0015 

Litter - - 0.0015 

Table 3.2 PERMANOVA tables of substrate, host species, site, and interactions effects on 

fungal communities both all factor and pairwise. 

Included are both the full model comparison and p-values from permuted pairwise tests. 
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Figure 3.3 Within-sample diversity of samples by substrate and host species. 

Shannon and Inverse Simpson estimates of within-sample (alpha) diversity for all samples, 

grouped by substrate and host species. Diversity estimates were determined using the phyloseq 

package. 
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Shannon Index 

Factor Df Sum Sq Mean Sq F value Pr(>F) 

Substrate     3 7.06 2.35 7.67 0.0004 

Host species 1 1.52 1.52 4.97 0.0319 

Site          4 2.46 0.62 2.01 0.1133 

Residuals     37 11.34 0.31   

Inverse Simpson Index 

Factor Df Sum Sq Mean Sq F value Pr(>F) 

Substrate     3 670.35 223.45 4.73 0.0068 

Host species 1 230.87 230.87 4.89 0.0333 

Site          4 212.16 53.04 1.12 0.3605 

Residuals     37 1747.35 47.23  
 

Table 3.3 ANOVA tables of substrate, host species, and site effects of within-sample 

diversity. 

Diversity was estimated for Shannon and Inverse Simpson indices using diversity function in 

vegan. 

Indicator taxa were determined for each of the substrates and substrate groupings, which 

shows that several leaf-associated taxa were unique to pre-senescent leaves and litter (Table 3.4). 

Several indicator taxa are significantly associated with phyllosphere and litter communities, 

occurring at high abundance across endophyte, epiphyte, and litter (Figure 3.4). Several taxa are 

also significantly associated with substrate-host combinations (Table 3.5). A Pearson correlation 

heatmap illustrates similarity between phyllosphere and some litter communities at the OTU-

level (Figure 3.5). 
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Substrate OTU FDR CONSTAX2 Result BLAST Result 

Epiphyte OTU_150 0.003 Fungi sp. Ceramothyrium sp. 

OTU_56 0.003 Golubevia pallescens Unknown 

OTU_58 0.003 Fungi sp. Unknown 

OTU_108 0.003 Mycosphaerellaceae sp. Acrodontium sp. 

OTU_191 0.003 Taphrina vestergrenii Unknown 

Endophyte OTU_48 0.01 Phyllosticta minima Phyllosticta sp. 

OTU_83 0.012 Seimatosporium sp. Seimatosporium sp. 

OTU_34 0.022 Rhytisma sp. Rhytismataceae sp. 

OTU_683 0.033 Zygophiala tardicrescens Schizothyrium sp. 

OTU_1104 0.034 Hypoxylon carneum Unknown 

Litter OTU_23 0.003 Colletotrichum sp. Colletotrichum sp. 

OTU_32 0.003 Xylariales sp. Xylariales sp. 

OTU_40 0.003 Codinaea lambertiae Codinaea lambertiae 

OTU_52 0.003 Ascomycota sp. Coleophoma sp. 

OTU_112 0.003 Lophiostoma sp. Amorocoelophoma sp. 

Soil OTU_19 0.003 Saitozyma podzolica Saitozyma sp. 

OTU_41 0.003 Archaeorhizomyces sp. Archaeorhizomyces sp. 

OTU_85 0.003 Solicoccozyma terricola Solicocozyma terricola 

OTU_93 0.003 Trichoderma hamatum Trichoderma sp. 

OTU_785 0.003 Pseudogymnoascus roseus Pseudogymnoascus sp. 

Epiphyte + 

Endophyte 

OTU_189 0.003 Ramularia nyssicola Ramularia nyssicola 

OTU_479 0.003 Ramularia sp. Ramularia sp. 

OTU_251 0.007 Ascomycota sp. Ramularia sp. 

OTU_3326 0.009 Ramularia sp. Ramularia sp. 

OTU_2 0.012 Ampelomyces sp. Unknown 

Epiphyte + 

Litter 

OTU_66 0.003 Bulleribasidium sp. Bulleribasidium sp. 

OTU_68 0.003 Epicoccum sp. Epicoccum sp. 

OTU_82 0.003 Capnodiales sp. Dothideomycetes sp. 

OTU_165 0.003 Dioszegia athyri Dioszegia sp. 

OTU_226 0.003 Agaricales sp. Unknown 

Endophyte 

+ Litter 

OTU_87 0.033 Ascomycota sp. Paraconiothyrium sp. 

OTU_1 0.033 Glomerellaceae sp. Colletotrichum sp. 

OTU_127 0.035 Diaporthales sp. Diaporthe sp. 

Litter + 

Soil 

OTU_380 0.003 Ascomycota sp. Helotiales sp. 

OTU_282 0.013 Striatibotrys eucylindrospora Striatibotrys sp. 

OTU_193 0.02 Cylindrocladium peruvianum Cylindrocladiella sp. 

OTU_121 0.023 Chalara sp. Leotiomycetes sp. 

Epiphyte + 

Endophyte 

+ Litter 

OTU_4 0.003 Ramularia sp. Ramularia sp. 

OTU_5 0.003 Ramularia pratensis Ramularia sp. 

OTU_8 0.003 Dothideomycetes sp. Cladosporium sp. 

OTU_10 0.003 Didymellaceae sp. Didymellaceae sp. 

OTU_11 0.003 Pleosporales sp. Alternaria sp. 

Table 3.4 Substrate and cross-substrate indicator OTUs. 

Indicator OTUs were determined using the multipatt function the indicspecies package. Substrate 

groupings with no significant indicator OTUs are not displayed, and only those with a false 

discovery rate (FDR) < 0.05 are included (maximum of 5 each). Classification against the 

UNITE with and Fungal RefSeq ITS databases with CONSTAX2 and BLASTn determined the 

closest known taxa. 
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Figure 3.4 Heatmap of OTU abundance by substrate. 

A total of 42 OTUs were included in the heatmap, all which were significant indicator taxa as 

determined using the multipatt function in the indicspecies package. Taxa names were 

determined using the CONSTAX2 classifier. Sample names are included beneath each column, 

with host species as either Acer rubrum (Acer) and Carya ovata (Carya) and site number 

designated in the name. 
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Substrate Host OTU FDR CONSTAX2 Result 

Epiphyte Acer rubrum OTU_2 0.011 Ampelomyces sp.  
 OTU_281 0.011 Ramularia sp.  
  OTU_191 0.017 Taphrina vestergrenii  
 OTU_149 0.017 Pseudeurotiaceae sp.  
  OTU_381 0.017 Taphrina sp.  
Carya ovata OTU_56 0.011 Golubevia pallescens  
  OTU_12 0.011 Erysiphe sp.  
 OTU_29 0.011 Exobasidium sp.  
  OTU_68 0.011 Epicoccum sp.  
 OTU_75 0.011 Fungi sp. 

Endophyte Acer rubrum OTU_48 0.011 Phyllosticta minima  
 OTU_83 0.011 Seimatosporium sp.  
  OTU_20 0.011 Plagiostoma sp.  
 OTU_116 0.011 Angustimassarina acerina  
  OTU_461 0.017 Venturia sp.  
Carya ovata OTU_332 0.011 Sphaerulina sp.  
  OTU_270 0.023 Ascomycota sp.  
 OTU_3279 0.039 Sphaerulina sp.  
  OTU_359 0.04 Mycosphaerellaceae sp.  
  OTU_105 0.042 Sphaerulina sp. 

Litter Carya ovata OTU_50 0.011 Hypocreales sp. 

Soil Carya ovata OTU_2619 0.011 Trichoderma sp.  
 OTU_2124 0.03 Fungi sp.  
  OTU_54 0.04 Mortierella minutissima  
 OTU_893 0.048 Penicillium sp. 

Table 3.5 Indicator taxa for combined substrate and host. 

Up to 5 indicator taxa with FDR < 0.05 were determined with multipatt for each substrate-host 

combination. These taxa were identified with the CONSTAX2 classifier against the UNITE 

database. 
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Figure 3.5 Pearson correlation heatmap of samples. 

Heatmap coloration shows the Pearson r coefficient between samples using rarefied OTU counts. 

A total of 657 OTUs were identified as having individual weighted abundances greater 

than 0.01%. The soil environment had the highest number of unique OTUs (212) and the lowest 

number of shared OTUs (152).  The litter had the highest total number of OTUs (421) and the 

highest number of shared OTUs (357), although not the highest proportion of shared OTUs 

(Figure 3.6, Table 3.6). Community composition based upon the 30 most abundant genera across 
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all samples is consistent with expectations of substrate and host species affinity (Figure 3.7A). 

Archaeorhizomycetes, Tuber, Inocybe and other root-associated or ectomycorrhizal fungi 

(Tedersoo et al., 2010; Menkis et al., 2014) were limited to soil samples, while Ramularia and 

Ampelomyces, a leaf pathogen and leaf-occuring hyperparasite, respectively (Videira et al., 2016; 

Falk et al., 1995) were common in the phyllosphere.  

 Epiphyte Endophyte Litter Soil 

Total OTUs 268 202 421 364 

Unique OTUs 5 (2%) 2 (1%) 64 (15%) 212 (58%) 

Shared with Epiphytes - 180 (89%) 247 (59%) 57 (16%) 

Shared with Endophytes 180 (67%) - 187 (44%) 43 (12%) 

Shared with Litter 247 (92%) 187 (93%) - 145 (40%) 

Total Shared 263 (98%) 200 (99%) 357 (85%) 152 (42%) 

Table 3.6 Total, unique, and shared OTUs by substrate. 

Comparison of the number of OTUs in each of four substrates. Shown are the total number of 

OTUs, the number of unique OTUs in each substrate and the number of OTUs shared between 

substrates. Total number of shared OTUs is the number of unique OTUs subtracted from the total 

number. OTUs were filtered to exclude those with a substrate-weighted abundance of less than 

0.01%. 
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Figure 3.6 Venn diagram of shared OTUs by substrate. 

657 OTUs were included which had substrate-weighted abundance greater than 0.01%. 

Overlapping regions indicate OTUs with at least one read in each of the substrates. 
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Figure 3.7 Comparison of community composition by substrate, host species, site, and swab 

material. 

A) The most abundant 30 genera, determined by substrate-weighted abundance and CONSTAX2 

classification, are displayed by the proportion of the community composed of OTUs classified 

within each genus. “Other” includes all OTUs not in the top 30, regardless of abundance. 

Samples are labeled by host species (genus name) and site with each substrate. B) Communities 

were ordinated using non-metric multidimensional scaling (NMDS) and Bray-Curtis distance, 

with ellipses representing 97% confidence interval estimates of centroids. C) Epiphyte 

communities were re-ordinated separately from the remaining samples. Ellipses show 97% 

confidence interval estimates of centroids of each swab material. 

Within each substrate, effects of host species were notable. Endophyte communities of 

hickory were enriched for Sphaerulina spp. (5.13% vs 0.030% in maple) while depleted for 

Phyllosticta spp. (0.011% vs 5.30%) and Seimatosporium spp. (0.045% vs 1.88%). Epiphyte 

communities of hickory were uniquely characterized by Erysiphe (11.4% vs 0.019%) and 
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Golubevia spp. (4.64% vs 0.70%), with a much lower abundance of Ampelomyces spp. (4.54% 

vs 38.9%). OTUs within these genera were significant indicator taxa for their substrate and host 

species. In leaf litter, some genera were much more abundant in maple litter, including 

Lareunionomyces (4.31% vs. 0.010%), Dothiora (0.84% vs 0.10%), Ampelomyces (0.14% vs 

0.030%), and Saitozyma (0.047% vs 0.0034%), or in hickory such as Periconia (2.14% vs 

0.051%), Plectosphaerella (3.73% vs 0.10%), and Mycosphaerella (0.40% vs 0.030%). 

Ramularia (3.99% in maple vs 10.97% in hickory), Taphrina (0.061% vs 0.14%) and 

Scleroramularia (0.020% vs 0.0034%) were between 2- and 6-fold different between host 

species. 

Despite differences in communities based on host species, some core taxa were observed 

at similar abundance between host species within a substrate. Endophyte communities had taxa 

such as Ramularia spp. (13.3% in A. rubrum vs 16.6% in C. ovata), while in epiphyte 

communities Ramularia spp, (21.5% vs 26.2%), Exobasidium spp. (2.47% vs 4.11%), Taphrina 

spp. (1.51% vs 2.11%), and Scleroramularia spp. (1.30% vs 0.93%) had similar relative 

abundances between hosts. Similarly abundant genera in leaf litter were Exobasidium (0.73% in 

Acer rubrum vs 0.50% in Carya ovata), Seimatosporium (0.091% vs 0.084%), Inocybe (0.017% 

in both), Mortierella (0.010% in both), and Russula (0.0033% in both). Ordination with non-

metric multidimensional scaling (NMDS) and Bray-Curtis dissimilarity show a broad pattern of 

fungal communities segregating by substrate, host species, and site (Figure 3.7B). 

Comparison of swab materials 

In this study we compared cotton-tipped and synthetic polymer-tipped swabs for 

collecting epiphytic samples. Total read counts were modeled using a negative binomial mixed 

model, with a fixed effect of swab material and a random intercept effect of leaf sampled. Read 
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counts per sample were not significantly different between paired cotton and synthetic swab 

samples (Figure 3.8) (p = 0.736, z = -0.338, incidence rate ratio for synthetic : cotton = 0.886, 

95% CI 0.432 – 1.799). PERMANOVA was used to compare similarity using rarefied OTU 

counts and Bray-Curtis distance, and showed no significant difference (p = 0.7) between swab 

types. Dispersion was also not significantly different (p = 0.36). NMDS ordination of swab 

(epiphyte) samples demonstrated this overlap of centroids and dispersion between material types 

(Figure 3.7C). Comparison of within-sample diversity showed no significant difference between 

mean diversity for cotton and synthetic samples (Figure 3.9), with observed richness (p = 0.31, F 

= 1.17,  95% CI difference = -30.76 – 88.83),  Shannon diversity (p = 0.61, F = 0.2865,  95% CI 

difference = -0.51 – 0.84), or Inverse Simpson (p = 0.68, F = 0.18, CI difference = -6.26 – 9.49). 

However, samples collected with the synthetic swab material had somewhat higher diversity for 

each metric examined. 
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Figure 3.8 Read counts by swab material. 

Read counts prior to rarefaction were compared between swab material types. Means are 

displayed with a large solid circle. 
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Figure 3.9 Richness and within-sample diversity of fungal communities by swab material. 

Epiphyte communities sampled with swabs were compared by observed richness, Shannon, and 

Inverse Simpson estimates of within-sample (alpha) diversity. Diversity estimates were 

determined using the phyloseq package. 

Discussion 

In the current study, we set out to determine how host species, substrate, and site 

structured fungal communities in a temperate forest ecosystem. We investigated this question 

with high-throughput ITS amplicon sequencing of fungal communities from pre-senescent 

leaves, litter, and soil, across five sites and between two host species, A. rubrum and C. ovata. 

The plant-associated fungal communities we observed show an effect of each of the factors 

characterized. We observed similar dispersion between endophytes and epiphytes, as well as soil 

and litter, while the litter communities had more similar composition to pre-senescent leaf 
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communities than soil communities. Within-sample diversity varied by substrate and host 

species, but not site. As reported in other studies, soil fungal communities were more diverse 

than litter and phyllosphere communities (Kong et al., 2020). These data indicate discrete 

mechanisms of community assembly and maintenance that differ between substrates, and lead to 

unique spatially explicit fungal communities based on substrate type. Host species, substrate and 

site contributed most to community structure in our study, have also been deemed significant in 

other studies (Abdelfattah et al., 2019; Küngas et al., 2020; Christian et al., 2020). 

Comparing the phyllospheres of maple and hickory 

In this study, we compared shagbark hickory (Carya ovata) and red maple (Acer 

rubrum). The phyllosphere microbial communities of A. rubrum have previously been examined, 

but only with culture-based fungal surveys (U’Ren et al., 2012) and amplicon-based bacterial 

surveys (Laforest-Lapointe et al., 2016a). U’Ren et al. (2012) isolated endophytic fungi, which 

were primarily classified as Pestalotiopsis, Phyllosticta, Colletotrichum, Plagiostoma, and 

Ramularia spp. These genera accounted for about 29% of reads in our A. rubrum endophyte 

samples. Seimatosporium spp. composed an additional 1.88% of these samples. Ampelomyces 

spp. contributed substantially (38.9%) to A. rubrum epiphyte communities. While we find 

consistency across these studies, our culture-independent method allowed for greater sampling 

depth and likely sequenced taxa that are difficult to culture. Laforest-Lapointe et al. (2016a) 

showed an effect of intra- and inter-individual variability on leaf endophyte communities, which 

aligns with the changes we see between sampled hosts.  

We are unaware of any phyllosphere leaf fungal community studies in C. ovata. Despite growing 

in the same habitat, our analyses show significant differences in phyllosphere (epiphytic and 
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endophytic) fungal communities between host species, with C. ovata phyllosphere communities 

showing greatly increased Sphaerulina, Erysiphe, and Golubevia spp. compared to A. rubrum. 

Fungal communities in maple and hickory leaf litter  

As leaves senesce and become litter, priority effects and leaf traits are expected to 

contribute to the communities observed (Veen et al., 2019; Bhatnagar et al., 2018). We observed 

that host species was a significant determinant of phyllosphere communities, and expected that 

combined priority effects and leaf trait effects would carry forward community differences 

between the hosts. While most of the taxa detected in leaf litter (421 OTUs, Figure 3.9) were also 

present in the phyllosphere (63%, 266 OTUs) or soil (34%, 145 OTUs), around 15% of the 

fungal community in the litter was unique to that niche (30% for maple communities, 11% for 

hickory, of which 17% of the litter unique OTUs were shared between species). Despite a small 

number of shared OTUs between host species, only a single indicator taxon, annotated as 

Hypocreales sp. (OTU_50), found to be significantly associated with hickory litter. Clustering by 

NMDS further supports differences between host species but not as strongly as for phyllosphere 

taxa. Out of the core litter taxa shared between host species, the ecologies of Inocybe, 

Mortierellaceae, and Russula as soil-inhabiting saprobic and ectomycorrhizal fungi (Seress et al., 

2016; Vandepol et al., 2020; Geml et al., 2010) and their low abundance suggests that these taxa 

may have been detected as the result of soil clinging to sampled litter. However, for other litter 

core taxa, abundance patterns existing in phyllosphere pre-senescence appear to continue in litter 

for Exobasidium spp., or reflect a loss of host specificity in the case of Seimatosporium spp. 

Fungi detected in the leaf litter are not necessarily derived from either soil or 

phyllosphere sources. Because the litter we sampled was most likely one year old, it may be 

possible that OTUs are persistent in the litter, or they may turnover or propagate throughout the 
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season or from year to year. Some fungal taxa are known to persist in temperate forest litter for 

periods greater than 1 year (Purahong et al., 2016). These taxa, such as specialized 

basidiomycete litter degraders, may be directly colonizing new litter after it settles on the forest 

floor. 

How do soil and litter fungal communities differ under maple and hickory? 

Soils are known to be hyper-diverse environments (Hu et al., 2019). In this study the soil 

fungal community had the highest number of unique OTUs (364) and lowest proportion of 

shared OTUs (42%) of any sample type. There were 145 OTUs shared between the litter and the 

soil, 54 of which were also shared with pre-senescent leaves (19/78 for maple, 37/87 for 

hickory). While these OTUs may have originated in pre-senescent leaves then dispersed to the 

litter then soil, dispersal could have alternately occurred whereby soil particles carrying fungi 

reached leaves and litter by wind or rain splash. Soil communities may be reservoirs of 

phyllosphere diversity (Zarraonaindia et al., 2015), but we cannot assess the direction of 

dispersal in this experiment. Only 22% (91 of 421) of the OTUs found in the soil were 

exclusively shared between soil and litter, which indicates a limited contribution of the soil 

community to the litter community. Overall, community composition of the soil differed 

significantly from the other environments (Figure 3.7A). 

No differences found between swab types on epiphytic fungal diversity indices 

A second research question in this study was whether the swab material used to sample 

epiphytic communities affected the measured diversity. We found no significant differences 

between synthetic and cotton swabs in any diversity measurement, including richness, similarity, 

and read counts. The cost per unit of synthetic swabs are approximately 10 times higher than the 

cost per unit of cotton swabs, which motivated this research question. These data indicate that 
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future studies can use sterile cotton swabs for sampling without any loss in sampling 

effectiveness, a more cost-effective strategy. 

Limitations and future directions 

Our sampling was limited by sampling at a single time point and comparison of only two 

host plants. Time-series data would allow for measurements of community assembly, stability, 

and turnover. Vořišková and Baldrian (2013) proposed that some of the early fungal diversity in 

leaf litter may come from the living leaves. It is possible these taxa were missed by the time we 

collected samples (late summer). Conducting the experiment earlier in the season, along a 

temporal transect with more time-discrete sampling, or controlling for this effect by using spore 

traps (Abdelfattah et al., 2019) would address this issue, and provide a clearer view of the 

successional changes in fungal communities during leaf senescence and decay. Variability in 

plant microbiomes exists across scales, from intra-individual (Laforest-Lapointe et al., 2016a; 

Osono and Mori, 2004), to vertically within a canopy (Izuno et al., 2016), geographically within 

a forest (Cordier et al., 2012), between species (Laforest-Lapointe et al., 2016b), and temporally 

throughout the year (Materatski et al., 2019). We cannot differentiate causes of inter-individual 

variation in this study as due to within-species genotype variability or site environment 

variability, because only a single tree was sampled for each species at each site. At the 

individual/vertical scale, we only sampled leaves within 3 m of the ground. Since smaller trees 

have lower branches, our sampling was biased towards younger trees that were more accessible, 

and this may have biased the observed phyllosphere communities. Yet, our results are 

significant, and we were able to explain much of the observed patterns of fungal diversity. 

rDNA amplicon-based surveys of fungal communities include biases, such as detecting 

only DNA, which fails to discriminate between active and dormant community members, which 
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a transcriptomic approach could (Morrison et al., 2019). Such an approach could identify if the 

taxa identified in each substrate are metabolically active, and better demonstrate which shared 

taxa are active in more than one substrate. In using rarefied read counts to assess community 

dissimilarity (Bray-Curtis) and diversity (Shannon and Simpson indexes), it is possible that inter-

organism rDNA copy number variation, primer bias, non-linear amplification, or other biases 

could alter our observations of community structure (Nilsson et al., 2019). However, Bray-Curtis 

dissimilarity best accounted for variability between samples, and presence-absence and intra-

taxa-based analyses (OTU overlap, relative taxa proportions) generally offered similar 

conclusions.  

Our study dissected factors that affect fungal community structure in forest ecosystems, 

and could be expanded to address several unanswered questions. Conducting the experiment 

earlier in the season, along a temporal transect with more time-discrete sampling, or controlling 

for aerial dispersal with spore traps could further assess sources and sinks of fungal propagules, 

and provide a clearer view of the successional changes in fungal communities during leaf 

senescence and decay. At a larger scale, broader geographic sampling would likely show some 

interesting differences of fungal communities, even on trees of the same species, assuming large 

enough differences in climate, phenology, host genotype, or proximity to other individuals of the 

same or different species. A more extensive sampling approach incorporating 

metatranscriptomics, amplification-free metagenomics, and/or genome-based accounting of 

rDNA copy number could reduce the potential biases inherent to our methods, but also provide 

increased detail of the functional roles of the organisms in the community, distinguishing 

dormant or commensal organisms from active saprobes, pathogens, hyperparasites, or mutualists. 

Finally, to relate fungal communities to ecosystem functions and biochemical processes, surveys 
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of community composition should be combined with host plant phenotypes and measurements of 

nutrients in litter and soil, leading to insights about host fitness and biogeochemical cycling. 

Conclusion 

Our sampling of leaf, leaf litter, and soil microbiomes shows that the factors of substrate, 

host species, site, and their interactions account for a substantial amount of variation in the 

fungal community. These factors are indicative of specific influences affecting the community, 

such as substrate chemistry and local environments. Fungal phyllosphere communities differ by 

host species, an effect which largely persists in the litter community following leaf senescence. 

We found that pre-senescent leaf communities overlap substantially with litter community 

composition, and less so with the soil beneath. The assembly and function of litter communities 

is complex, thus further studies are needed to address spatial and temporal variability, activity of 

community members, and their effects on ecosystem processes.  
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CONCLUSION 

 Plant microbiomes are complex, in both the diversity of their components 

(microorganisms) as well as the processes which dictate their assembly. In Chapter 1, I relate the 

traits of the microbes in the communities of plant roots to their interactions with each other and 

with their host plant, demonstrating that competitive interactions can occur within plant roots and 

that changes to the host from viral disease can result in alterations to the microbial community. 

While the interactions that were observed cannot necessarily be generalized to all microbes nor 

all host plants, these interactions suggest that lower diversity of endophyte communities may 

result from resource limitation and that physiological changes of host plants may cause 

feedbacks with a plant’s microbiome. Chapter 2 describes the CONSTAX2 classifier, a tool 

designed to aid in the understanding of metabarcoding studies by accurately assigning taxonomy 

to detected DNA sequences. The classifier performs as well or better than any currently 

competing taxonomic assignment tool, and has improved usability, functionality, and 

computational requirements compared to its predecessor. This type of tool allows for 

understanding DNA-based surveys in the context of ecological literature, by which the 

assignment of an informative name connects an observed taxon to knowledge about its 

occurrence in other studies, its physiology, and its interactions with other organisms. Lastly, 

Chapter 3 describes the factors affecting fungal community composition in maple and hickory 

leaves, leaf litter, and soil, assesses the similarity of these communities across substrates, 

demonstrates the utility of taxonomy assignment, and provides evidence for the effectiveness of 

epiphyte sampling techniques. In advancing our knowledge of what matters to plant microbiome 

assembly, I hope that this work contributes to the sustainability and livability of this planet for all 

its people.
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